Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T19:18:18.108Z Has data issue: false hasContentIssue false

Extended neutral hydrogen filamentary network in NGC 2403

Published online by Cambridge University Press:  09 June 2023

Simone Veronese
Affiliation:
Netherlands Institute for Radio Astronomy (ASTRON) Kapteyn Astronomical Institute, University of Groningen
W. J. G. de Blok
Affiliation:
Netherlands Institute for Radio Astronomy (ASTRON) Kapteyn Astronomical Institute, University of Groningen Department of Astronomy, University of Cape Town
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new neutral hydrogen (Hi) observations of the nearby galaxy NGC 2403 to determine the nature of a low-column density cloud that was detected earlier by the Green Bank Telescope.

We find that this cloud is the tip of a complex of filaments of extraplanar gas that is coincident with the main disk. The total Hi mass of the complex is 2 × 107 M or 0.6% of the total Hi mass of the galaxy. The main structure, previously referred to as the 8-kpc filament, is now seen to be even more extended, along a 20 kpc stream.

Type
Poster Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barker, M. K., Ferguson, A. M. N., Irwin, M. J., Arimoto, N., & Jablonka, P. 2012, MNRAS, 419, 1489 10.1111/j.1365-2966.2011.19814.xCrossRefGoogle Scholar
Barnes, D. G., Staveley-Smith, L., de Blok, W. J. G., et al. 2001, MNRAS, 322, 486 10.1046/j.1365-8711.2001.04102.xCrossRefGoogle Scholar
Carlin, J. L., Garling, C. T., Peter, A. H. G., et al. 2019, ApJ, 886, 109 10.3847/1538-4357/ab4c32CrossRefGoogle Scholar
Danovich, M., Dekel, A., Hahn, O., Ceverino, D., & Primack, J. 2015, MNRAS, 449, 2087 10.1093/mnras/stv270CrossRefGoogle Scholar
de Blok, W. J. G., Keating, K. M., Pisano, D. J., et al. 2014, A&A, 569, A68 Google Scholar
de Blok, W. J. G., Zwaan, M. A., Dijkstra, M., Briggs, F. H., & Freeman, K. C. 2002, A&A, 382, 43 Google Scholar
Fraternali, F. & Binney, J. J. 2006, MNRAS, 366, 449 10.1111/j.1365-2966.2005.09816.xCrossRefGoogle Scholar
Fraternali, F. & Binney, J. J. 2008, MNRAS, 386, 935 10.1111/j.1365-2966.2008.13071.xCrossRefGoogle Scholar
Fraternali, F., van Moorsel, G., Sancisi, R., & Oosterloo, T. 2002, AJ, 123, 3124 10.1086/340358CrossRefGoogle Scholar
Giovanelli, R., Haynes, M. P., Kent, B. R., et al. 2007, AJ, 133, 2569 10.1086/516635CrossRefGoogle Scholar
Heald, G., Józsa, G., Serra, P., et al. 2011, A&A, 526, A118 Google Scholar
Madau, P. & Dickinson, M. 2014, Annual Review of Astronomy and Astrophysics, 52, 415 10.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Marasco, A., Fraternali, F., Heald, G., et al. 2019, A&A, 631, A50 Google Scholar
Pisano, D. J., Barnes, D. G., Gibson, B. K., et al. 2004, ApJ, 610, L17 10.1086/423239CrossRefGoogle Scholar
Sancisi, R., Fraternali, F., Oosterloo, T., & van der Hulst, T. 2008, A&A Rev., 15, 189 Google Scholar
Somerville, R. S. & Davé, R. 2015, ARA&A, 53, 51 Google Scholar
Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, AJ, 136, 256310.1088/0004-6256/136/6/2563CrossRefGoogle Scholar