Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T18:45:35.611Z Has data issue: false hasContentIssue false

Exploring the predictability of the solar cycle from the polar field rise rate: Results from observations and simulations

Published online by Cambridge University Press:  23 December 2024

Akash Biswas*
Affiliation:
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The inherent stochastic and nonlinear nature of the solar dynamo makes the strength of the solar cycles vary in a wide range, making it difficult to predict the strength of an upcoming solar cycle. Recently, our work has shown that by using the observed correlation of the polar field rise rate with the peak of polar field at cycle minimum and amplitude of following cycle, an early prediction can be made. In a follow-up study, we perform SFT simulations to explore the robustness of this correlation against variation of meridional flow speed, and against stochastic fluctuations of BMR tilt properties that give rise to anti-Joy and anti-Hale type anomalous BMRs. The results suggest that the observed correlation is a robust feature of the solar cycle and can be utilized for a reliable prediction of peak strength of a cycle at least 2 to 3 years earlier than the minimum.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Babcock, H. W. 1961, The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. Astrophys. J., 133, 572.CrossRefGoogle Scholar
Baumann, I., Schmitt, D., Schüssler, M., & Solanki, S. K. 2004, Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astron. Astrophys., 426, 10751091.CrossRefGoogle Scholar
Bhowmik, P., Jiang, J., Upton, L., Lemerle, A., & Nandy, D. 2023, Physical Models for Solar Cycle Predictions. arXiv e-prints, arXiv:2303.12648.Google Scholar
Bhowmik, P. & Nandy, D. 2018, Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nature Communications, 9, 5209.CrossRefGoogle ScholarPubMed
Biswas, A., Karak, B. B., & Cameron, R. 2022, Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way. Phys. Rev. Lett., 129(24), 241102.CrossRefGoogle ScholarPubMed
Biswas, A., Karak, B. B., & Kumar, P. 2023,a Exploring the reliability of polar field rise rate as a precursor for an early prediction of solar cycle. Mon. Not. R. Astron. Soc., 526a(3), 39944003.Google Scholar
Biswas, A., Karak, B. B., Usoskin, I., & Weisshaar, E. 2023,b Long-Term Modulation of Solar Cycles. Space Sci. Rev., 219b(3), 19.Google Scholar
Cameron, R. & Schüssler, M. 2015, The crucial role of surface magnetic fields for the solar dynamo. Science, 347, 13331335.CrossRefGoogle ScholarPubMed
Cameron, R. H., Jiang, J., Schmitt, D., & Schüssler, M. 2010, Surface Flux Transport Modeling for Solar Cycles 15-21: Effects of Cycle-Dependent Tilt Angles of Sunspot Groups. Astrophys. J., 719(1), 264270.CrossRefGoogle Scholar
Charbonneau, P. 2020, Dynamo models of the solar cycle. Living Reviews in Solar Physics, 17(1), 4.CrossRefGoogle Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Predicting Solar Cycle 24 With a Solar Dynamo Model. Physical Review Letters, 98(13), 131103.CrossRefGoogle ScholarPubMed
Golubeva, E. M., Biswas, A., Khlystova, A. I., Kumar, P., & Karak, B. B. 2023, Probing the variations in the timing of the Sun’s polar magnetic field reversals through observations and surface flux transport simulations. Mon. Not. R. Astron. Soc., 525(2), 17581768.CrossRefGoogle Scholar
Gopalswamy, N. 2022, The Sun and Space Weather. Atmosphere, 13(11), 1781.CrossRefGoogle Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, The Magnetic Polarity of Sun-Spots. Astrophys. J., 49, 153.CrossRefGoogle Scholar
Hathaway, D. H. 2015, The Solar Cycle. Living Reviews in Solar Physics, 12(1), 4.CrossRefGoogle ScholarPubMed
Hathaway, D. H., Wilson, R. M., & Reichmann, E. J. 1994, The Shape of the Sunspot Cycle. Sol. Phys., 151(1), 177190.CrossRefGoogle Scholar
Jha, B. K., Karak, B. B., Mandal, S., & Banerjee, D. 2020, Magnetic Field Dependence of Bipolar Magnetic Region Tilts on the Sun: Indication of Tilt Quenching. Astrophys. J. Lett., 889(1), L19.CrossRefGoogle Scholar
Jiang, J. 2020, Nonlinear Mechanisms that Regulate the Solar Cycle Amplitude. Astrophys. J., 900(1), 19.CrossRefGoogle Scholar
Jiang, J., Wang, J.-X., Jiao, Q.-R., & Cao, J.-B. 2018, Predictability of the Solar Cycle Over One Cycle. Astrophys. J., 863(2), 159.CrossRefGoogle Scholar
Jiang, J., Zhang, Z., & Petrovay, K. 2023, Comparison of physics-based prediction models of solar cycle 25. Journal of Atmospheric and Solar-Terrestrial Physics, 243, 106018.CrossRefGoogle Scholar
Karak, B. B. 2010, Importance of Meridional Circulation in Flux Transport Dynamo: The Possibility of a Maunder-like Grand Minimum. Astrophys. J., 724, 10211029.CrossRefGoogle Scholar
Karak, B. B. 2020, Dynamo Saturation through the Latitudinal Variation of Bipolar Magnetic Regions in the Sun. Astrophys. J. Lett., 901(2), L35.CrossRefGoogle Scholar
Karak, B. B. 2023, Models for the long-term variations of solar activity. Living Reviews in Solar Physics, 20(1), 3.CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, The Waldmeier effect and the flux transport solar dynamo. Mon. Not. R. Astron. Soc., 410, 15031512.Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Quenching of Meridional Circulation in Flux Transport Dynamo Models. Sol. Phys., 278, 137148.CrossRefGoogle Scholar
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R. 2014, Flux Transport Dynamos: From Kinematics to Dynamics. Space Sci. Rev., 186, 561602.CrossRefGoogle Scholar
Karak, B. B. & Miesch, M. 2017, Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model. Astrophys. J., 847, 69.CrossRefGoogle Scholar
Kumar, P., Biswas, A., & Karak, B. B. 2022, Physical link of the polar field buildup with the Waldmeier effect broadens the scope of early solar cycle prediction: Cycle 25 is likely to be slightly stronger than Cycle 24. Mon. Not. R. Astron. Soc., 513(1), L112L116.CrossRefGoogle Scholar
Kumar, P., Karak, B. B., & Vashishth, V. 2021,a Supercriticality of the Dynamo Limits the Memory of the Polar Field to One Cycle. Astrophys. J., 913a(1), 65.Google Scholar
Kumar, P., Nagy, M., Lemerle, A., Karak, B. B., & Petrovay, K. 2021,b The Polar Precursor Method for Solar Cycle Prediction: Comparison of Predictors and Their Temporal Range. Astrophys. J., 909b(1), 87.Google Scholar
Leighton, R. B. 1969, A Magneto-Kinematic Model of the Solar Cycle. Astrophys. J., 156, 1.CrossRefGoogle Scholar
McClintock, B. H., Norton, A. A., & Li, J. 2014, Re-examining Sunspot Tilt Angle to Include Anti-Hale Statistics. Astrophys. J., 797, 130.CrossRefGoogle Scholar
Muñoz-Jaramillo, A., Navarrete, B., & Campusano, L. E. 2021, Solar Anti-Hale Bipolar Magnetic Regions: A Distinct Population with Systematic Properties. Astrophys. J., 920(1), 31.CrossRefGoogle Scholar
Nagy, M., Lemerle, A., Labonville, F., Petrovay, K., & Charbonneau, P. 2017, The Effect of “Rogue” Active Regions on the Solar Cycle. Sol. Phys., 292, 167.CrossRefGoogle Scholar
Nandy, D. 2021, Progress in Solar Cycle Predictions: Sunspot Cycles 24-25 in Perspective. Sol. Phys., 296(3), 54.CrossRefGoogle Scholar
Pal, S., Bhowmik, P., Mahajan, S. S., & Nandy, D. 2023, Impact of Anomalous Active Regions on the Large-scale Magnetic Field of the Sun. arXiv e-prints, arXiv:2305.13145.Google Scholar
Petrovay, K. 2020, Solar cycle prediction. Living Reviews in Solar Physics, 17(1), 2.CrossRefGoogle Scholar
Sreedevi, A., Jha, B. K., Karak, B. B., & Banerjee, D. 2023, AutoTAB: Automatic Tracking Algorithm for Bipolar Magnetic Regions. Astrophys. J. Suppl., 268(2), 58.CrossRefGoogle Scholar
Upton, L. A. & Hathaway, D. H. 2018, An Updated Solar Cycle 25 Prediction With AFT: The Modern Minimum. Geophys. Res. Lett., 45(16), 80918095.CrossRefGoogle Scholar