Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:47:01.179Z Has data issue: false hasContentIssue false

Exploring the connection between stellar halo profiles and accretion histories in L* galaxies

Published online by Cambridge University Press:  21 March 2017

Nicola C. Amorisco*
Affiliation:
Institute for Theory and Computation, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA email: [email protected] Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I use a library of controlled minor merger N-body simulations, a particle tagging technique and Monte Carlo generated ΛCDM accretion histories to study the highly stochastic process of stellar deposition onto the accreted stellar halos (ASHs) of L* galaxies. I explore the main physical mechanisms that drive the connection between the accretion history and the density profile of the ASH. I find that: i) through dynamical friction, more massive satellites are more effective at delivering their stars deeper into the host; ii) as a consequence, ASHs feature a negative gradient between radius and the local mass-weighed virial satellite-to-host mass ratio; iii) in L* galaxies, most ASHs feature a density profile that steepens towards sharper logarithmic slopes at increasing radii, though with significant halo-to-halo scatter; iv) the ASHs with the largest total ex-situ mass are such because of the chance accretion of a small number of massive satellites (rather than of a large number of low-mass ones).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Amorisco, N. C. 2016, in prep.Google Scholar
Amorisco, N. C. 2015, arXiv:1511.08806 Google Scholar
Benson, A. J. 2005, MNRAS, 358, 551 CrossRefGoogle Scholar
Bullock, J. S. & Johnston, K. V. 2005, ApJ, 635, 931 CrossRefGoogle Scholar
Cooper, A. P., Cole, S., Frenk, C. S., et al. 2010, MNRAS, 406, 744 CrossRefGoogle Scholar
Deason, A. J., Belokurov, V., Evans, N. W., & Johnston, K. V. 2013, ApJ, 763, 113 CrossRefGoogle Scholar
Fakhouri, O., Ma, C.-P., & Boylan-Kolchin, M. 2010, MNRAS, 406, 2267 CrossRefGoogle Scholar
Gao, L., Navarro, J. F., Cole, S., et al. 2008, MNRAS, 387, 536 CrossRefGoogle Scholar
Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S., & Lee, K. 2014, MNRAS, 438, 2578 CrossRefGoogle Scholar
Gilbert, K. M., Guhathakurta, P., Beaton, R. L., et al. 2012, ApJ, 760, 76 CrossRefGoogle Scholar
Ibata, R. A., Lewis, G. F., McConnachie, A. W., et al. 2014, ApJ, 780, 128 CrossRefGoogle Scholar
Jiang, L., Cole, S., Sawala, T., & Frenk, C. S. 2015, MNRAS, 448, 1674 CrossRefGoogle Scholar
Ludlow, A. D., Navarro, J. F., Angulo, R. E., et al. 2014, MNRAS, 441, 378 CrossRefGoogle Scholar
Rodriguez-Gomez, V., Pillepich, A., Sales, L. V., et al. 2016, MNRAS, 458, 2371 CrossRefGoogle Scholar
Sesar, B., Jurić, M., & Ivezić, Ž. 2011, ApJ, 731, 4 CrossRefGoogle Scholar
van Dokkum, P. G., Abraham, R., & Merritt, A. 2014, ApJL, 782, L24 CrossRefGoogle Scholar