Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T17:11:30.406Z Has data issue: false hasContentIssue false

Exploring plasma evolution during Sagittarius A* flares

Published online by Cambridge University Press:  22 May 2014

S. Dibi
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands email: [email protected]
S. Markoff
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands email: [email protected]
R. Belmont
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France
J. Malzac
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France
N. M. Barrière
Affiliation:
Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720, USA
J. A. Tomsick
Affiliation:
Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new way of describing the flares occurring from Sgr A* within a single zone with a self-consistent calculation of the particle distribution. The results allow us to give an interpretation to the flaring events generated very close to the supermassive black hole (SMBH) without assuming a specific particle distribution. We conclude that the flare data are more likely generated by a weakly magnetized plasma in which the particles flow in and out as expected from an accretion flow. Such a plasma, with prescription for non-thermal acceleration, injection, escape, and cooling losses, gives a spectrum with a break between the infra-red and the X-ray, allowing a better simultaneous match in the different wavelengths. The parameters favor the non-thermal synchrotron spectrum, and a decrease/increase of the magnetic field and plasma density are not favored for producing the flare event, but particle acceleration must be happening by other means. We show that under certain conditions, the real particle distribution can differ significantly from the standard distributions used in such studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Belmont, R., Malzac, J., & Marcowith, A. 2008, A&A 491, 617Google Scholar
Bower, G. C., Wright, M. C. H., Falcke, H., & Backer, D. C. 2003, ApJ 588, 331Google Scholar
Dexter, J., Agol, E., & Fragile, P. C. 2009, ApJ Lett. 703, L142CrossRefGoogle Scholar
Dibi, S., Drappeau, S., Fragile, P. C., Markoff, S., & Dexter, J., 2012, MNRAS 426, 1928Google Scholar
Dodds-Eden, K., Sharma, P., Quataert, E., Genzel, R., Gillessen, S., Eisenhauer, F., & Porquet, D. 2010, ApJ 725, 450CrossRefGoogle Scholar
Drappeau, S., Dibi, S., Dexter, J., Markoff, S., & Fragile, P. C., 2013, MNRAS 431, 2872CrossRefGoogle Scholar
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Reviews of Modern Physics, 82, 3121Google Scholar
Liu, S., Petrosian, V., Melia, F., & Fryer, C. L. 2006, ApJ 648, 1020Google Scholar
Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2007, ApJ Lett. 654, L57Google Scholar
Morris, M. R., Meyer, L., & Ghez, A. M. 2012, Research in Astronomy and Astrophysics, 12, 995Google Scholar
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P. K. 2009, ApJ 706, 497Google Scholar
Yuan, F., Quataert, E., & Narayan, R. 2003, ApJ 598, 301Google Scholar