Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:23:24.285Z Has data issue: false hasContentIssue false

Exploring a direct observational method to measure high-redshift cloud collapse timescales and GRB progenitor lifetimes

Published online by Cambridge University Press:  29 August 2024

Jeff Cooke*
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia ARC of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)
Nandita Khetan
Affiliation:
DARK Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark
Sandra Savaglio
Affiliation:
Department of Physics, University of Calabria, I-87036 Arcavacata di Rende, Italy
Jielai Zhang
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)
Mark Suhr
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia ARC of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Long gamma-ray bursts (LGRBs) and superluminous supernovae (SLSNe) are expected to result from massive star deaths. However to date, there has been no direct observational measurement of their cloud collapse timescales nor progenitor lifetimes to help constrain their mass. Our analyses of z 2 LGRB afterglow spectra and Hubble Space Telescope images find a higher fraction of host galaxies that are interacting, have a close companion, and/or may have experienced a recent galaxy ‘fly by’ as compared to the general z 2 galaxy population. A smaller set of z 2 SLSNe suggests a similar result. Under the hypothesis that galaxy interactions induce cloud collapse and star formation near their closest approach, we explore measurements of the host and companion galaxy velocities and separations at the time of the LRGB/SLSN event as a direct physical means to measure the timescale of cloud collapse plus progenitor star lifetime.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barton, E. J., Geller, M. J., & Kenyon, S. J. 2000, ApJ, 530, 660 CrossRefGoogle Scholar
Barton Gillespie, E., Geller, M. J., & Kenyon, S. J. 2003, ApJ, 582, 668 Google Scholar
Berrier, J. C. & Cooke, J. 2012, MNRAS, 426, 1647 Google Scholar
Bertone, S. & Conselice, C. J. 2009, MNRAS, 396, 2345 Google Scholar
Christensen, L., Møller, P., Fynbo, J. P. U., et al. 2014, MNRAS, 445, 225 CrossRefGoogle Scholar
Conselice, C. J., Rajgor, S., & Myers, R. 2008, MNRAS, 386, 909 CrossRefGoogle Scholar
Cooke, J., Sullivan, M., Gal-Yam, A., et al. 2012, Nature, 491, 228 Google Scholar
Cooke, J. & O’Meara, J. M. 2015, ApJL, 812, L27 Google Scholar
Curtin, C., Cooke, J., Moriya, T. J., et al. 2019, ApJS, 241, 17 CrossRefGoogle Scholar
de Mello, D. F., Smith, L. J., Sabbi, E., et al. 2008, AJ, 135, 548 Google Scholar
Krogager, J.-K., Fynbo, J. P. U., Møller, P., et al. 2012, MNRAS, 424, L1 Google Scholar
Moriya, T. J., Tanaka, M., Yasuda, N., et al. 2019, ApJS, 241, 16 CrossRefGoogle Scholar
Oke, J. B., Cohen, J. G., Carr, M., et al. 1995, PASP, 107, 375 Google Scholar
Page, K. L., Willingale, R., Bissaldi, E., et al. 2009, MNRAS, 400, 134 Google Scholar
Patton, D. R., Pritchet, C. J., Yee, H. K. C., et al. 1997, ApJ, 475, 29 Google Scholar
Prochaska, J. X., Neeleman, M., Kanekar, N., et al. 2019, ApJL, 886, L35 Google Scholar
Savaglio, S., Budavári, T., Glazebrook, K., et al. 2007, The Messenger, 128, 47 Google Scholar
Savaglio, S., Rau, A., Greiner, J., et al. 2012, MNRAS, 420, 627 Google Scholar
Steidel, C. C., Shapley, A. E., Pettini, M., et al. 2004, ApJ, 604, 534 Google Scholar
Ventou, E., Contini, T., Bouché, N., et al. 2019, A&A, 631, A87 Google Scholar