Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-29T17:59:24.952Z Has data issue: false hasContentIssue false

Expanded Maser Science Opportunities with the ALMA Wideband Sensitivity Upgrade

Published online by Cambridge University Press:  07 February 2024

Crystal L. Brogan*
Affiliation:
National Radio Astronomy Observatory, Charlottesville, VA, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ALMA Project is embarking on a partner-wide initiative to at least double, and ultimately quadruple the correlated bandwidth of ALMA by @2030. This initiative is called the ALMA Wideband Sensitivity Upgrade (WSU). In this contribution, I briefly describe the main aspects of the upgrade and status. Then I provide several examples of how the WSU will enhance (sub)millimeter maser science by affording the ability to observe more diagnostic maser transitions (and thermal lines) with a single observation.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Asayama, S., Tan, G. H., Saini, K., et al. 2020, SPIE Proceedings, 11445, 1144575 Google Scholar
Baudry, A., Wong, K. T., Etoka, S., et al. 2023, arXiv:2305.03171Google Scholar
Bergman, P. & Humphreys, E. M. L. 2020, A&A, 638, A19 Google Scholar
Brogan, C. L., Hunter, T. R., Towner, A. P. M., et al. 2019, ApJL, 881, L39 10.3847/2041-8213/ab2f8aCrossRefGoogle Scholar
Brogan, C. 2019, ALMA2019: Science Results and Cross-Facility Synergies, 28 Google Scholar
Brogan, C. L., Hunter, T. R., & Fomalont, E. B. 2018, arXiv:1805.05266Google Scholar
Burns, R. A., Sugiyama, K., Hirota, T., et al. 2020, Nature Astronomy, 4, 506 10.1038/s41550-019-0989-3CrossRefGoogle Scholar
Burns, R. A., Uno, Y., Sakai, N., et al. 2023, Nature Astronomy, 7, 557 10.1038/s41550-023-01899-wCrossRefGoogle Scholar
Carpenter, J., Iono, D., Kemper, F., et al. 2020, arXiv:2001.11076Google Scholar
Carpenter, J., Brogan, C., Iono, D., et al. 2022, arXiv:2211.00195Google Scholar
Decin, L., Gottlieb, C., Richards, A., et al. 2022, The Messenger, 189, 3 Google Scholar
Escoffier, R. P., Comoretto, G., Webber, J. C., et al. 2007, A&A, 462, 801 Google Scholar
Gottlieb, C. A., Decin, L., Richards, A. M. S., et al. 2022, A&A, 660, A94 Google Scholar
Hirota, T., Tsuboi, M., Kurono, Y., et al. 2014, PASJ, 66, 106 10.1093/pasj/psu110CrossRefGoogle Scholar
Kamazaki, T., Okumura, S. K., Chikada, Y., et al. 2012, PASJ, 64, 29 10.1093/pasj/64.2.29CrossRefGoogle Scholar
Kameno, S., Harikane, Y., Sawada-Satoh, S., et al. 2023, PASJ, 75, L1 10.1093/pasj/psad011CrossRefGoogle Scholar
Lee, J.-W., Kojima, T., Gonzalez, A., et al. 2021, ALMA Front End Development Workshop, 12 Google Scholar
McGuire, B. A., Brogan, C. L., Hunter, T. R., et al. 2018, ApJL, 863, L35 10.3847/2041-8213/aad7bbCrossRefGoogle Scholar
Melnick, G. J., Menten, K. M., Phillips, T. G., et al. 1993, ApJL, 416, L37 10.1086/187065CrossRefGoogle Scholar
Menten, K. M., Melnick, G. J., & Phillips, T. G. 1990, Liege International Astrophysical Colloquia, 29, 243 Google Scholar
Navarrini, A., Kerr, A. R., Dindo, P., et al. 2021, ALMA Front End Development Workshop, 3 Google Scholar
Neufeld, D. A. & Melnick, G. J. 1990, ApJL, 352, L9 10.1086/185681CrossRefGoogle Scholar
Peng, T.-C., Humphreys, E. M. L., Testi, L., et al. 2013, A&A, 559, L8 Google Scholar
Remijan, A., Seifert, N. A., & McGuire, B. A. 2016, 71st International Symposium on Molecular Spectroscopy, FB11Google Scholar
Stecklum, B., Wolf, V., Linz, H., et al. 2021, A&A, 646, A161 Google Scholar
Sugiyama, K., Saito, Y., Yonekura, Y., et al. 2019, The Astronomer’s Telegram, 12446 Google Scholar
Wittkowski, M. & Paladini, C. 2014, EAS Publications Series, 69-70, 179 10.1051/eas/1569009CrossRefGoogle Scholar
Yagoubov, P. 2019, ALMA Development Workshop, 49 Google Scholar