Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:27:19.031Z Has data issue: false hasContentIssue false

Excitation of magneto-acoustic waves in network magnetic elements

Published online by Cambridge University Press:  26 August 2011

Yoshiaki Kato
Affiliation:
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan email: [email protected]
Oskar Steiner
Affiliation:
Kiepenheuer-Institut für Sonnenphysik Schöneckstrasse 6, D-79104 Freiburg, Germany
Matthias Steffen
Affiliation:
Astrophysikalisches Institut Potsdam An der Sternwarte 16, D-14482, Potsdam, Germany
Yoshinori Suematsu
Affiliation:
Hinode Science Center, National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

From radiation magnetohydrodynamic (RMHD) simulations we track the temporal evolution of a vertical magnetic flux sheet embedded in a two-dimensional non-stationary atmosphere that reaches all the way from the upper convection zone to the low chromosphere. Examining its temporal behavior near the interface between the convection zone and the photosphere, we describe the excitation of propagating longitudinal waves within the magnetic element as a result of convective motion in its surroundings.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Choudhuri, A. R., Auffret, H., & Priest, E. R. 1993a, Solar Phys., 143, 49CrossRefGoogle Scholar
Choudhuri, A. R., Dikpati, M., & Banerjee, D. 1993b, Astrophys. J., 413, 811CrossRefGoogle Scholar
Cranmer, S. R. & van Ballegooijen, A. A. 2005, Astrophys. J. Suppl., 156, 265CrossRefGoogle Scholar
Fawzy, D. E., Ulmschneider, P., & Cuntz, M. 1998, Astron. Astrophys, 336, 1029Google Scholar
Freytag, B., Steffen, M., & Dorch, B. 2002, Astron. Nachr., 323, 213Google Scholar
Hasan, S. S., Kalkofen, W., & van Ballegooijen, A. A. 2000, Astrophys. J., 535, L67CrossRefGoogle Scholar
Hasan, S. S. & Ulmschneider, P. 2004, Astron. Astrophys, 422, 1085CrossRefGoogle Scholar
Herbold, G., Ulmschneider, P., Spruit, H. C., & Rosner, R. 1985, Astron. Astrophys, 145, 157Google Scholar
Huang, P., Musielak, Z. E., & Ulmschneider, P. 1995, Astron. Astrophys, 297, 579Google Scholar
Musielak, Z. E. & Ulmschneider, P. 2001, Astron. Astrophys, 370, 541Google Scholar
Schrijver, C. J., Cote, J., Zwaan, C., & Saar, S. H. 1989, Astrophys. J., 337, 964CrossRefGoogle Scholar
Simon, G. W. & Leighton, R. B. 1964, Astrophys. J., 140, 1120CrossRefGoogle Scholar
Skumanich, A., Smythe, C., & Frazier, E. N. 1975, Astrophys. J., 200, 747CrossRefGoogle Scholar
Steiner, O., Grossmann-Doerth, U., Knölker, M., & Schüssler, M. 1998, Astrophys. J., 495, 468CrossRefGoogle Scholar