Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T03:20:23.366Z Has data issue: false hasContentIssue false

Exact solutions for discs around stationary black holes

Published online by Cambridge University Press:  01 August 2006

N. Požár
Affiliation:
Inst. of Theor. Physics, Faculty of Maths and Phys., Charles Univ., Prague, Czech Republic email: [email protected]
O. Semerák
Affiliation:
Inst. of Theor. Physics, Faculty of Maths and Phys., Charles Univ., Prague, Czech Republic email: [email protected]
J. Šácha
Affiliation:
Inst. of Theor. Physics, Faculty of Maths and Phys., Charles Univ., Prague, Czech Republic email: [email protected]
M. Žáček
Affiliation:
Inst. of Theor. Physics, Faculty of Maths and Phys., Charles Univ., Prague, Czech Republic email: [email protected]
T. Zellerin
Affiliation:
Inst. of Theor. Physics, Faculty of Maths and Phys., Charles Univ., Prague, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Black holes surrounded by axisymmetric structures prosper in some of the most interesting sources in the universe. However, a consistent exact description of the gravitational field of these systems is still lacking. In a static case, the task reduces to Laplace equation and the fields of multiple sources follow by mere superposition. In a rotating case, non-linearity of the Einstein equations resists simple grasp, but even then the theory of completely integrable systems seems to verge on satisfactory solutions. It seeks them in terms of θ-functions on special manifolds connected – symptomatically – with the names of Riemann and Hilbert.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Ansorg, M., Kleinwächter, A., Meinel, R. & Neugebauer, G. 2002, Phys. Rev. D, 65, 044006Google Scholar
Chakrabarti, S. K. 1988, J. Astrophys. Astron., 9, 49CrossRefGoogle Scholar
Frauendiener, J. & Klein, C. 2001, Phys. Rev. D, 63, 084025CrossRefGoogle Scholar
Frauendiener, J. & Klein, C. 2004, J. Comp. Appl. Math., 167, 193CrossRefGoogle Scholar
Frauendiener, J. & Klein, C. 2006, Lett. Math. Phys., 76, 249CrossRefGoogle Scholar
Karas, V., Huré, J.-M. & Semerák, O. 2004, Class. Quantum Grav., 21, R1CrossRefGoogle Scholar
Klein, C. 2003, Phys. Rev. D, 68, 027501Google Scholar
Klein, C. & Richter, O. 2005, Ernst equation on hyperelliptic Riemann surfaces (Springer, Berlin)CrossRefGoogle Scholar
Korotkin, D. A. 2004, Math. Ann., 329, 335Google Scholar
Lemos, J. P. S. & Leterier, P. S. 1994, Phys. Rev. D, 49, 5135CrossRefGoogle Scholar
Letelier, P. S. 2003, Phys. Rev. D, 68, 104002CrossRefGoogle Scholar
Požár, N. 2006, diploma thesis (Charles Univ., Faculty Math. & Phys., Prague)Google Scholar
Šácha, J. & Semerák, O. 2005, Czech. J. Phys., 55, 139CrossRefGoogle Scholar
Semerák, O. 2002, Class. Quantum Grav., 19, 3829Google Scholar
Semerák, O. 2003, Class. Quantum Grav, 20, 1613Google Scholar
Semerák, O. 2004, Class. Quantum Grav., 21, 2203CrossRefGoogle Scholar
Semerák, O. & Žáček, M. 2000, Class. Quantum Grav., 17, 1613CrossRefGoogle Scholar
Semerák, O., Zellerin, T. & Žáček, M. 1999, MNRAS, 308, 691 (Erratum: 2001 322 207) and 705CrossRefGoogle Scholar
Žáček, M. & Semerák, O. 2002, Czech. J. Phys., 52, 19CrossRefGoogle Scholar
Zellerin, T. & Semerák, O. 2000, Class. Quantum Grav., 17, 5103CrossRefGoogle Scholar