Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T16:29:58.307Z Has data issue: false hasContentIssue false

Evolution of the MBH–σ and MBHLbulge Relations

Published online by Cambridge University Press:  03 June 2010

J.-H. Woo
Affiliation:
Seoul National University, Republic of Korea Email: [email protected]
N. V. Bennert
Affiliation:
Dept. of Physics and Astronomy, University of California Santa Barbara, USA Email: [email protected], [email protected]
T. Treu
Affiliation:
Dept. of Physics and Astronomy, University of California Santa Barbara, USA Email: [email protected], [email protected]
M. Malkan
Affiliation:
Dept. of Physics and Astronomy, University of California Los Angeles, USA Email: [email protected]
R. Blandford
Affiliation:
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, USA Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To constrain the origin of scaling relations between black hole mass and galaxy properties, i.e., stellar velocity dispersion and bulge luminosity, we investigate the evolution of scaling relations in the past 6 Gyrs. Over the last three years, we have obtained high signal-to-noise ratio Keck spectra of ~ 50 intermediate luminosity broad-line AGNs at z ~ 0.4 and z ~ 0.6, to measure stellar velocity dispersion, and HST (ACS and NICMOS) images of the same objects (~ 40 so far), to measure bulge luminosity from the two-dimensional AGN-galaxy decomposition analysis. In this paper, we will summarize the main results on the MBH–σ and MBH–bulge luminosity relations and their evolution to the present-day universe. The measured scaling relations show that the relations have evolved significantly in the past 6 billion years, and that black hole growth predates the final galaxy assembly.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bennert, V. N., et al. 2009, ApJ, in pressGoogle Scholar
Bentz, M. C., et al. 2006, ApJ, 644, 133CrossRefGoogle Scholar
Bentz, M. C., et al. 2009a, ApJ, 697, 160Google Scholar
Bentz, M. C., et al. 2009b, ApJ, 705, 199Google Scholar
Ciotti, L., & Ostriker, J. P. 2007, ApJ, 665, 1038CrossRefGoogle Scholar
Croton, D. J. 2006, MNRAS, 369, 1808CrossRefGoogle Scholar
Di Matteo, T., et al. 2005, Nature, 433, 604Google Scholar
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9Google Scholar
Ferrarese, L., et al. 2001, ApJ, 555, L79Google Scholar
Gebhardt, K., et al. 2000a, ApJ, 539, L13CrossRefGoogle Scholar
Gebhardt, K., et al. 2000b, ApJ, 543, L5Google Scholar
Hopkins, P. F., et al. 2007, ApJ, 669, 45CrossRefGoogle Scholar
Hopkins, P. F., et al. 2009, ApJ, 669, 45CrossRefGoogle Scholar
Jahnke, K., et al. 2009, ApJ, 706, 215Google Scholar
Kaspi, S., et al. 2005, ApJ, 629, 61CrossRefGoogle Scholar
Kauffmann, G. & Haehnelt, M. 2000, MNRAS, 311, 576Google Scholar
Merloni, A., et al. 2009, ApJ, in pressGoogle Scholar
McGill, K., Woo, J.-H., Treu, T., & Malkan, M. A. 2008, ApJ, 673, 703CrossRefGoogle Scholar
Peng, C., et al. 2002, AJ, 124, 266CrossRefGoogle Scholar
Tremaine, S., et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Treu, T., Woo, J.-H., Malkan, M. A., & Blandford, R. D. 2007, ApJ, 667, 117Google Scholar
Volonteri, M., Haardt, F., & Madau, P. 2003, ApJ, 582, 559Google Scholar
Woo, J.-H., Treu, T, Malkan, M. A., & Blandford, R. D. 2006, ApJ, 645, 900Google Scholar
Woo, J.-H., Treu, T, Malkan, M. A., & Blandford, R. D. 2008, ApJ, 681, 295CrossRefGoogle Scholar
Woo, J.-H., et al. 2009, ApJ, submittedGoogle Scholar