Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T12:42:33.486Z Has data issue: false hasContentIssue false

Evolution of the large-scale magnetic field over three solar cycles

Published online by Cambridge University Press:  26 February 2010

J. Todd Hoeksema*
Affiliation:
Hansen Experimental Physics Laboratory, Stanford University, Cypress C-13, 466 Via Ortega, Stanford, CA 94305USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of the large-scale magnetic field show that the current extended solar cycle minimum is different from the three previous well-observed minima. The weaker polar fields increase the relative influence of middle and low-latitude flux patterns on the configuration of the corona and heliosphere. A much larger portion of the open flux originates in equatorial coronal holes. Even though the mean magnetic field of the Sun as a star is the weakest since measurements began, the sector structure of the interplanetary field, though smaller in magnitude, reached fairly high latitude until 2009. The emergence of active regions through the cycle and transport of flux from low to high latitudes also show quite different patterns, providing insight into the dynamo that drives the cycle. Long records of synoptic observations provide a rich source of information about solar activity that must be maintained.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Altrock, R. C. 2009, B. A. A. S. 41, 861Google Scholar
Devore, C. R., Sheeley, N. R. Jr., Boris, J. P., Young, T. R. Jr., & Harvey, K. L. 1985, Solar Physics 102, 41CrossRefGoogle Scholar
Hoeksema, J. T., Wilcox, J. M., & Scherrer, P. H. 1972, J. Geophys. Res. 87, 10331Google Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., & Thompson, M. J. 2009, ApJ. Lett. 701, L87, 10.1088/0004-637X/701/2/L87Google Scholar
Lanza, A. F. 2009, this volumeGoogle Scholar
Lo, L., Hoeksema, J. T., & Scherrer, P. H. 2009, SOHO-23 Workshop, sun.stanford.edu/~todd/posters/SOHO23.Lo.3CyclesToroidal.pdfGoogle Scholar
McComas, D. J. et al. , 2000, J. Geophys. Res. 105, 10419.CrossRefGoogle Scholar
Pesnell, W. D. 2008, Solar Physics, 252, 209, 10.1007/s11207-008-9252-2.CrossRefGoogle Scholar
Schatten, K. 1968, Nature, 220, 1211CrossRefGoogle Scholar
Shrauner, J. A. & Scherrer, P. H. 1994, Solar Physics, 153, 131CrossRefGoogle Scholar
Smith, E. J. & Balogh, A. 2008, Geophys. Res. L. 35, 10.1029/2008GL035345Google Scholar
Svalgaard, L., Duvall, T. L. Jr., & Scherrer, P. H. 1978, Solar Physics, 58, 255Google Scholar
Zirin, H. 1987, Solar Physics, 110, 101, 10.1007/BF00148205CrossRefGoogle Scholar