Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T09:03:47.511Z Has data issue: false hasContentIssue false

The evolution of the ages and metallicities of massive galaxies since z = 0.7

Published online by Cambridge University Press:  10 April 2015

Anna Gallazzi
Affiliation:
INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy. email: [email protected]
Eric F. Bell
Affiliation:
Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109, USA
Stefano Zibetti
Affiliation:
INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy. email: [email protected]
Jarle Brinchmann
Affiliation:
Leiden Observatory, Leiden University, 2300RA, Leiden, the Netherlands
Daniel D. Kelson
Affiliation:
Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results on the stellar population properties of massive galaxies at z = 0.7 based on deep, medium-resolution IMACS spectra for a sample of ~ 70 galaxies in the ECDFS with M* > 1010M. The age–mass and stellar metallicity–mass relations for the population as a whole have a similar shape as the local relations over the probed mass range, but offset to ages younger by ~ 4 Gyr and metallicities lower by ~ 0.13 dex. Quiescent galaxies alone have stellar ages and metallicities consistent with passive evolution onto the local quiescent galaxies relations. The evolution in metallicity is driven by star-forming galaxies. However a significant fraction of massive star-forming galaxies have metallicities comparable to those of local quiescent galaxies. If quenched at z < 0.7 they can provide the necessary population to reproduce the scatter in age and metallicity of local quiescent galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bruzual, G. & Charlot, S., 2003, MNRAS, 344, 1000Google Scholar
Choi, J., Conroy, C., Moustakas, J., et al. 2014, ApJ, 792, 95Google Scholar
Cucciati, O., Tresse, L., Ilbert, O., et al. 2012, A&A, 539, A31Google Scholar
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41CrossRefGoogle Scholar
Gallazzi, A., Bell, E. F., Zibetti, S., Brinchmann, J., & Kelson, D. D. 2014, ApJ, 788, 72CrossRefGoogle Scholar
Jørgensen, I. & Chiboucas, K. 2013, AJ, 145, 77Google Scholar
Moustakas, J., Zaritsky, D., Brown, M., et al. 2011, arXiv:1112.3300Google Scholar
Moustakas, J., Coil, A. L., Aird, J., et al. 2013, ApJ, 767, 50Google Scholar
Muzzin, A., Marchesini, D., Stefanon, M., et al. 2013, ApJ, 777, 18CrossRefGoogle Scholar
Peeples, M. S. & Somerville, R. S. 2013, MNRAS, 428, 1766Google Scholar
Sánchez-Blázquez, P., Jablonka, P., Noll, S., et al. 2009, A&A, 499, 47Google Scholar
Schiavon, R. P., Faber, S. M., Konidaris, N., et al. 2006, ApJ, 651, L93Google Scholar