Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T10:28:33.658Z Has data issue: false hasContentIssue false

The evolution of star formation in QSOs according to WISE

Published online by Cambridge University Press:  29 March 2021

K. A. Cutiva-Alvarez
Affiliation:
Depto. de Astronomía, DCNE, Universidad de Guanajuato, CP 36023, Gto., México email: [email protected]
R. Coziol
Affiliation:
Depto. de Astronomía, DCNE, Universidad de Guanajuato, CP 36023, Gto., México email: [email protected]
J. P. Torres-Papaqui
Affiliation:
Depto. de Astronomía, DCNE, Universidad de Guanajuato, CP 36023, Gto., México email: [email protected]
H. Andernach
Affiliation:
Depto. de Astronomía, DCNE, Universidad de Guanajuato, CP 36023, Gto., México email: [email protected]
A. C. Robleto-Orús
Affiliation:
Depto. de Astronomía, DCNE, Universidad de Guanajuato, CP 36023, Gto., México email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using WISE data, we calibrated the W2-W3 colors in terms of star formation rates (SFRs) and applied this calibration to a sample of 1285 QSOs with the highest flux quality, covering a range in redshift from z ˜ 0.3 to z ˜ 3.8. According to our calibration, the SFR increases continuously, reaching a value at z ˜ 3.8 about 3 times higher on average than at lower redshift. This increase in SFR is accompanied by an increase of the BH mass by a factor 100 and a gradual increase of the mean Eddington ratio from 0.1 to 0.3 up to z ˜ 1.5 – 2.0, above which the ratio stays constant, despite a significant increase in BH mass. Therefore, QSOs at high redshifts have both more active BHs and higher levels of star formation activity.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1995, PASP, 93, 5 CrossRefGoogle Scholar
Coziol, R, Torres-Papaqui, J. P., Plauchu-Frayn, I. et al. 2014, RMxAA, 50, 255 Google Scholar
Coziol, R., Torres-Papaqui, J. P., & Andernach, H. 2015, AJ, 142, 192 CrossRefGoogle Scholar
Delvecchio, I., Gruppioni, C., Pozzi, F., et al. 2014, MNRAS, 439, 2736 CrossRefGoogle Scholar
Donoso, E., Yan, L., Tsai, C., et al. 2012, ApJ, 145, 6 Google Scholar
Jarrett, T. H., Masci, F., Tsai, C. W., et al. 2013, AJ, 145, 6 CrossRefGoogle Scholar
Kozłowski, S. 2017, ApJS, 228, 9 CrossRefGoogle Scholar
Leipski, C., Meisenheimer, K., Walter, F., et al. 2014, ApJ, 785, 154 CrossRefGoogle Scholar
Pâris, I., Petitjean, P., Ross, N. P., et al. 2017, ApJ, 597, A79 Google Scholar
Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 CrossRefGoogle Scholar
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 CrossRefGoogle Scholar