Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-21T23:37:26.017Z Has data issue: false hasContentIssue false

The evolution of carbon-chain chemistry from prestellar to protostellar cores in Taurus Molecular Cloud

Published online by Cambridge University Press:  09 June 2023

Jenny M. Ramos
Affiliation:
National University of San Marcos, Lima, 15081, Peru Chalmers Astrophysics & Space Sciences Summer (CASSUM) Research Program 2021 email: [email protected]
Yao-Lun Yang
Affiliation:
RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0106, Japan Department of Astronomy, University of Virginia, Charlottesville, USA 22904 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery of abundant carbon-chain molecules in protostellar cores motivates the development of the warm carbon-chain chemistry. To understand the role of warm carbon-chain chemistry in star-forming regions, we studied C2H and c-C3H2 in 15 embedded protostars in the Taurus molecular cloud, whose evolutionary stages range from prestellar to Class I/II, using data from the Submillimeter Telescope (SMT). We calculated the excitation temperature, column density, and abundance of C2H and c-C3H2 in each source. We compared those properties with evolutionary indicators of the protostars. We also estimated the kinetic temperature using RADEX. Finally, we compared the abundance of C2H and c-C3H2 in our survey with that in the survey of protostellar cores in the Perseus molecular cloud. While we are unable to identify new WCCCs, our results suggest that the abundances of C2H and c-C3H2 could be an indicator to find WCCC candidates.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Higuchi, A. E., Sakai, N., Watanabe, Y., et al. 2018, ApJS, 236, 52. doi: 10.3847/1538-4365/aabfe9 CrossRefGoogle Scholar
Law, C. J., Öberg, K. I., Bergner, J. B., et al. 2018, ApJ, 863, 88. doi: 10.3847/1538-4357/aacf9d CrossRefGoogle Scholar
Sakai, N., Sakai, T., Hirota, T., et al. 2008, ApJ, 672, 371. doi: 10.1086/523635 CrossRefGoogle Scholar
Sakai, N., Saruwatari, O., Sakai, T., et al. 2010, A&A, 512, A31. doi: 10.1051/0004-6361/200913098 CrossRefGoogle Scholar
Sakai, N., Sakai, T., Hirota, T., et al. 2010, ApJ, 722, 1633. doi: 10.1088/0004-637X/722/2/1633 CrossRefGoogle Scholar
Sakai, N. & Yamamoto, S. 2013, Chemical Reviews, 113, 8981. doi: 10.1021/cr4001308 CrossRefGoogle Scholar
van der Tak, F. F. S., Black, J. H., Schöier, F. L., et al. 2007, A&A, 468, 627. doi: 10.1051/0004-6361:20066820CrossRefGoogle Scholar