Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T23:12:24.122Z Has data issue: false hasContentIssue false

The Evolution of Atmospheric Escape of Highly Irradiated Gassy Exoplanets

Published online by Cambridge University Press:  16 August 2023

Andrew P. Allan
Affiliation:
Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
Aline A. Vidotto
Affiliation:
Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
Leonardo A. Dos Santos
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atmospheric escape has traditionally been observed using hydrogen Lyman-α transits, but more recent detections utilise the metastable helium triplet lines at 1083nm. Capable of being observed from the ground, this helium signature offers new possibilities for studying atmospheric escape. Such detections are dependent however on the specific high-energy flux received by the planet. Previous studies show that the extreme-UV band both drives atmospheric escape and populates the triplet state, whereas lower energy mid-UV radiation depopulates the state through photoionisations. This is supported observationally, with the majority of planets with 1083nm detections orbiting a K-type star, which emits a favourably high ratio of EUV to mid-UV flux. The goal of our work is understanding how the observability of escaping helium evolves. We couple our one-dimensional hydrodynamic non-isothermal model of atmospheric escape with a ray-tracing technique to achieve this. We consider the evolution of the stellar radiation and the planet’s gravitational potential.

Keywords

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Allan, A. & Vidotto, A. A. 2019, MNRAS, 490, 3760 10.1093/mnras/stz2842CrossRefGoogle Scholar
Allan, A. P., Vidotto, A. A., & Dos Santos, L. A. in prep, MNRASGoogle Scholar
Allart, R., Bourrier, V., Lovis, C., et al. 2018, Science, 362, 1384 10.1126/science.aat5879CrossRefGoogle Scholar
Dos Santos, L. A., Vidotto, A. A., Vissapragada, S., et al. 2022, A&A, 659, A62 10.1051/0004-6361/202142038CrossRefGoogle Scholar
Fortney, J. J. & Nettelmann, N. 2010, Space Science Reviews, 152, 423 10.1007/s11214-009-9582-xCrossRefGoogle Scholar
Johnstone, C. P., Bartel, M., & Güdel, M. 2021, A&A, 649, A96 Google Scholar
Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, Astrophysical Journal, 693, 23 10.1088/0004-637X/693/1/23CrossRefGoogle Scholar
Nortmann, L., Pallé, E., Salz, M., et al. 2018, Science, 362, 1388 10.1126/science.aat5348CrossRefGoogle Scholar
Oklopčić, A. 2019, ApJ, 881, 133 10.3847/1538-4357/ab2f7fCrossRefGoogle Scholar
Oklopčić, A. & Hirata, C. M. 2018, ApJ Letters, 855, L11 10.3847/2041-8213/aaada9CrossRefGoogle Scholar
Poppenhaeger, K. 2022, MNRAS, 512, 1751 10.1093/mnras/stac507CrossRefGoogle Scholar
Spake, J. J., Sing, D. K., Evans, T. M., et al. 2018, Nature, 557, 68 10.1038/s41586-018-0067-5CrossRefGoogle Scholar
Vidotto, A. A. & Jatenco-Pereira, V. 2006, ApJ, 639, 416 10.1086/499329CrossRefGoogle Scholar