Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T16:47:29.354Z Has data issue: false hasContentIssue false

The Evolution of a Double Diffusive Magnetic Buoyancy Instability

Published online by Cambridge University Press:  12 August 2011

Lara J. Silvers
Affiliation:
Centre for Mathematical Science, City University London, Northampton Square, London, EC1V 0HB, U. K. email: [email protected]
Geoffrey M. Vasil
Affiliation:
Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8, Canada email: [email protected]
Nicholas H. Brummell
Affiliation:
Department of Applied Mathematics & Statistics, University of California, Santa Cruz, CA 95064, U.S.A. email: [email protected]
Michael R. E. Proctor
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, U. K. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, Silvers et al. (2009b), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or “surfs”) on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abbett, W. P., Fisher, G. H., Fan, Y., & Bercik, D. J. 2004, ApJ, 612, 557CrossRefGoogle Scholar
Babcock, H. W. 1961, ApJ, 131, 572.CrossRefGoogle Scholar
Brummell, N. H., Cline, K. S., & Cattaneo, F. 2002, MNRAS, 329, L73CrossRefGoogle Scholar
Cattaneo, F., Brummell, N. H., & Cline, K. S. 2006, MNRAS, 365, 727CrossRefGoogle Scholar
Cline, K. S., Brummell, N. H., & Cattaneo, F. 2003, ApJ, 588, 630CrossRefGoogle Scholar
Cline, K. S., Brummell, N. H., & Cattaneo, F. 2003, ApJ, 599, 1449CrossRefGoogle Scholar
Emonet, T. & Moreno-Insertis, F. 1998, ApJ, 492, 80CrossRefGoogle Scholar
Fan, Y., Zweibel, E. G., & Lantz, S. R. 1998, ApJ, 493, 480CrossRefGoogle Scholar
Fan, Y.Abbett, W. P. & Fisher, G. H. 2003, ApJ, 582, 1206CrossRefGoogle Scholar
Hughes, D. W., 1985, Geophys. Astrophys. Fluid Dynamics, 32, 273CrossRefGoogle Scholar
Hughes, D. W. 2007, in The Solar Tachocline, eds. Hughes, D. W., Rosner, R., & Weiss, N. O. (Cambridge: Cambridge University Press) 11CrossRefGoogle Scholar
Hughes, D. W., Falle, S. A. E. G., & Joarder, P. 1998, MNRAS, 298, 433CrossRefGoogle Scholar
Hughes, D. W. & Falle, S. A. E. G. 1998, ApJ, 509, L57CrossRefGoogle Scholar
Jouve, L. & Brun, A. S. 2009, ApJ, 701, 2, 1300.CrossRefGoogle Scholar
Leighton, R. B. 1969, ApJ, 156, 1.CrossRefGoogle Scholar
Matthews, P. C., Proctor, M. R. E., & Weiss, N. O. 1995, JFM, 305, 281.CrossRefGoogle Scholar
Newcomb, W. A. 1961, Phys. Fluids, 4, 391.CrossRefGoogle Scholar
Parker, E. N. 1955, ApJ, 121, 491CrossRefGoogle Scholar
Parker, E. N. 1993, ApJ, 408, 707CrossRefGoogle Scholar
Silvers, L. J., Bushby, P. J., & Proctor, M. R. E. 2009a, MNRAS, 400, 1, 337.CrossRefGoogle Scholar
Silvers, L. J., Vasil, G. M., Brummell, N. H., & Proctor, M. R. E. 2009b, MNRAS, 400, 1, 337.CrossRefGoogle Scholar
Tobias, S. M. & Hughes, D. W. 2004, ApJ, 603, 785.CrossRefGoogle Scholar
Vasil, G. M. & Brummell, N. H. 2008, ApJ, 686, 709CrossRefGoogle Scholar
Vasil, G. M. & Brummell, N. H. 2009, ApJ, 690, 783.CrossRefGoogle Scholar
Wissink, J. G., Matthews, P. C., Hughes, D. W., & Proctor, M. R. E.. 2000, ApJ, 536, 982CrossRefGoogle Scholar