Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T22:40:26.875Z Has data issue: false hasContentIssue false

Evidence of thermal conduction suppression in hot coronal loops: supplementary results

Published online by Cambridge University Press:  09 September 2016

Tongjiang Wang
Affiliation:
Dept. of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA; email: [email protected] NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770, USA
Leon Ofman
Affiliation:
Dept. of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA; email: [email protected] NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770, USA
Xudong Sun
Affiliation:
W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
Elena Provornikova
Affiliation:
Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA
Joseph M. Davila
Affiliation:
NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe xix and Fe xxi lines. Recently, such longitudinal waves have been found by SDO/AIA in the 94 and 131 Å channels. Wang et al. (2015) reported the first AIA event revealing signatures in agreement with a fundamental standing slow-mode wave, and found quantitative evidence for thermal conduction suppression from the temperature and density perturbations in the hot loop plasma of ≳ 9 MK. The present study extends the work of Wang et al. (2015) by using an alternative approach. We determine the polytropic index directly based on the polytropic assumption instead of invoking the linear approximation. The same results are obtained as in the linear approximation, indicating that the nonlinearity effect is negligible. We find that the flare loop cools slower (by a factor of 2–4) than expected from the classical Spitzer conductive cooling, approximately consistent with the result of conduction suppression obtained from the wave analysis. The modified Spitzer cooling timescales based on the nonlocal conduction approximation are consistent with the observed, suggesting that nonlocal conduction may account for the observed conduction suppression in this event. In addition, the conduction suppression mechanism predicts that larger flares may tend to be hotter than expected by the EM-T relation derived by Shibata & Yokoyama (2002).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aschwanden, M. J. 2009, Space Sci. Rev., 149, 31 Google Scholar
Curdt, W., Wang, T. J., & Dwivedi, B. N., et al. 2004, in: Lacoste, H. (ed.), Proc. of SOHO 13 - Waves, Oscillations and Small-Scale Transient Events, ESA SP-547, p. 333Google Scholar
De Moortel, I. & Hood, A. W. 2003, A&A, 408, 755 Google Scholar
Feldman, U., Laming, J. M., & Doschek, G. A. 1995, ApJ, 451, L79 Google Scholar
Hannah, I. G. & Kontar, E. P. 2013, A&A, 553, A10 Google Scholar
Jacobs, C. & Poedts, S. 2011, Adv. Space Res., 48, 1958 CrossRefGoogle Scholar
Jiang, Y., Liu, S., Liu, W., & Petrosian, V. 2006, ApJ, 638, 1140 CrossRefGoogle Scholar
Kumar, P., Innes, D. E., & Inhester, B. 2013, ApJ, 779, L7 Google Scholar
Kumar, P., Kumar, P., Nakariakov, V. M., & Cho, K.-S., ApJ, 804, 4 CrossRefGoogle Scholar
Liu, W. & Ofman, L. 2014, Solar Phys., 289, 3233 CrossRefGoogle Scholar
Nakariakov, V. M. & Verwichte, E. 2005, Living Rev. in Sol. Phys., 2, 3 Google Scholar
Luciani, J. F., Mora, P., & Virmont, J. 1983, Phys. Rev. Lett., 51, 1664 Google Scholar
McTiernan, J. M., Kane, S. R., & Loran, J. M., et al. 1993, ApJ, 416, L91 Google Scholar
Ofman, L. & Wang, T. J. 2002, ApJ, 580, L85 Google Scholar
Shibata, K. & Yokoyama, T. 2002, ApJ, 577, 422 Google Scholar
Roberts, B., Edwin, P. M., & Benz, A. O. 1983, Nature, 305, 688 CrossRefGoogle Scholar
Rosner, R., Low, B. C., & Holzer, T. E. 1986, in: Sturrock, P. A. (ed.), Physics of the Sun. II (Dordrecht: Reidel), p. 135 Google Scholar
Ruderman, M. S. 2013, A&A, 553, A23 Google Scholar
Sigalotti, L., Di, G., Mendoza-Briceño, C. A., & Luna-Cardozo, M. 2007, Solar Phys., 246, 187 CrossRefGoogle Scholar
Sun, X., Hoeksema, J. T., & Liu, Y., et al. 2013, ApJ, 778, 139 Google Scholar
Taroyan, Y., Erdélyi, R., Wang, T. J., & Bradshaw, S. J. 2007, ApJ, 659, L173 Google Scholar
Van Doorsselaere, T., Wardle, N., Del Zanna, G., et al. 2011, ApJ, 727, L32 Google Scholar
Wang, T. J. 2011, Space Sci. Rev., 158, 397 Google Scholar
Wang, T., Solanki, S. K., Curdt, W., Innes, D. E., & Dammasch, I. E. 2002, ApJ, 574, L101 Google Scholar
Wang, T. J., Solanki, S. K., Innes, D. E., Curdt, W., & Marsch, E. 2003a, A&A, 402, L17 Google Scholar
Wang, T. J., Solanki, S. K., Curdt, W., et al. 2003b, A&A, 406, 1105 Google Scholar
Wang, T. J., Solanki, S. K., Innes, D. E., & Curdt, W. 2005, A&A, 435, 753 Google Scholar
Wang, T. J., Innes, D. E., & Qiu, J. 2007, ApJ, 656, 598 CrossRefGoogle Scholar
Wang, T. J., Ofman, L., Sun, X., Provornikova, E., & Davila, J. M. 2015, ApJ 811 L13 (Paper I)Google Scholar