Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T05:45:56.807Z Has data issue: false hasContentIssue false

Evidence for Solid Planets from Kepler's Near-Resonance Systems

Published online by Cambridge University Press:  29 April 2014

Man Hoi Lee
Affiliation:
Dept. of Earth Sciences and Dept. of Physics, The University of Hong Kong, Hong Kong
D. Fabrycky
Affiliation:
Dept. of Astronomy & Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA
D. N. C. Lin
Affiliation:
UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could be in resonance if their orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely-held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional processes are at play.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Artymowicz, P. 1993, ApJ, 419, 166Google Scholar
Banfield, D. & Murray, N. 1992, Icarus, 99, 390Google Scholar
Batygin, K. & Morbidelli, A. 2012, AJ 145 article id. 1Google Scholar
Bryden, G., Różyczka, M., Lin, D. N. C., & Bodenheimer, P. 2000, ApJ, 540, 1091Google Scholar
Delisle, J.-B., Laskar, J., Correia, A. C. M., & Boué, G. 2012, A&A, 546, 71Google Scholar
Fabrycky, D. C., et al. 2012, ApJ, submitted (arXiv:1202.6328)Google Scholar
Kley, W. 2000, MNRAS, 313, L47Google Scholar
Kretke, K. A. & Lin, D. N. C. 2012, ApJ, 755, 74.Google Scholar
Laughlin, G. & Chambers, J. E. 2001, ApJ, 551, L109CrossRefGoogle Scholar
Laughlin, G., Butler, R. P., Fischer, D. A., Marcy, G. W., Vogt, S. S., & Wolf, A. S. 2005, ApJ, 622, 1182CrossRefGoogle Scholar
Lee, M. H. 2004, ApJ, 611, 517Google Scholar
Lee, M. H. & Peale, S. J. 2002, ApJ, 567, 596Google Scholar
Lissauer, J. J., et al. 2011, ApJS, 197, 8CrossRefGoogle Scholar
Lissauer, J. J., et al. 2012, ApJ, 750, 112CrossRefGoogle Scholar
Lithwick, Y. & Wu, Y. 2012, ApJ, 756, L11CrossRefGoogle Scholar
Murray, C. D. & Dermott, S. F. 1999, Solar System Dynamics (Cambridge: Cambridge Univ. Press)Google Scholar
Paardekooper, S.-J., Baruteau, C., & Kley, W. 2011, MNRAS, 410, 293.CrossRefGoogle Scholar
Rivera, E. J. & Lissauer, J. J. 2001, ApJ, 558, 392Google Scholar
Rein, H. 2012, MNRAS, 427, L21Google Scholar
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257CrossRefGoogle Scholar
Valencia, D., O'Connell, R. J., & Sasselov, D. 2006, Icarus, 181, 545CrossRefGoogle Scholar
Ward, W. R. 1997, Icarus, 126, 261CrossRefGoogle Scholar
Zhang, K. & Hamilton, D. P. 2008, Icarus, 193, 267Google Scholar