Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:53:33.888Z Has data issue: false hasContentIssue false

Evidence for climate variations induced by the 11-year solar and cosmic rays cycles

Published online by Cambridge University Press:  26 February 2010

William Bruckman
Affiliation:
Department of Physics and Electronics, University of Puerto Rico at Humacao, CUH Station, 100 Route 908, Humacao, PR 00791-4300 email: [email protected]
Elio Ramos
Affiliation:
Department of Mathematics, University of Puerto Rico at Humacao, CUH Station, 100 Route 908, Humacao, PR 00791-4300 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyzed data from PSMSL monthly mean sea level seeking correlations between sea level fluctuations and the solar and cosmic rays 11 year cycle. The data reveals decadal variability that could be causally connected to the solar and cosmic rays cycle, since these periodic changes are correlated. It is also found that the solar (cosmic rays) cycle correlates (anti-correlates) with the mean global surface temperature anomaly. A probable explanation of the above correlations is that the solar intensity and cosmic rays variations induce oscillations in the average temperature and precipitation, with corresponding changes in the continental water and snow accumulation. Thus, for instance, a higher than average snow and water over land, and lower temperatures produce oceans thermal contraction and lower mass, implicating lower mean sea level.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bruckman, W. & Ramos, E. 2003, Submitted to Geophys. Res. Lett. (unpublished).Google Scholar
Bruckman, W. & Ramos, E. 2003, Simposio: Cambio Climatico: Universidad de Puerto Rico(UPR) Bayamon. Proceedings UPR-Bayamon LibraryGoogle Scholar
Bruckman, W. & Ramos, E. 2007, Congreso Internacional Gaia y El Cambio Climatico 2007, UPR-Rio Piedras, PR. Revista Umbral, Primer tomoGoogle Scholar
Eddy, J. A. 1976, Science, 192, 1189.CrossRefGoogle Scholar
Haigh, J. D. 1999, Quart. J. Roy. Meteor. Soc., 125, 871892.Google Scholar
Haigh, J. D. 1999, J. Atmos. Solar Terrest. Physics, 61, 6372.CrossRefGoogle Scholar
Haigh, J. D. 1996, Science, 272, 981984.CrossRefGoogle Scholar
Jevrejeva, S., Moore, J. C.Grinsted, A., & Woodworth, P. L. 2008, Geophys. Res. Lett., 3, L08715.Google Scholar
Kniveton, D. R. & Todd, M. C. 2001, Geophys. Res. Lett., 28, 15271530.CrossRefGoogle Scholar
Maunder, E. W. 1890, Mon. Not. R. Astron. Soc., 50, 251.CrossRefGoogle Scholar
Shindell, D., Rind, D., Balabhandran, N., Lean, J., & Lonergan, 1999, Science, 284, 305.CrossRefGoogle Scholar
Sporer, F. W. 1887, Vierteljahrsschr. Astron. Ges. Leipzig, 22, 323.Google Scholar
Svensmark, H. & Friis-Christensen, E. 1997, J. Atm. Sol. Terr. Phys, 284, 59, 12251232.CrossRefGoogle Scholar
Svensmark, H. & Friis-Christensen, E. 1998, Phys. Rev. Lett., 81, 50275030.CrossRefGoogle Scholar
Wolf, R. 1856, Astron. Mitt. Zurich, 1, VIII.Google Scholar
Wolf, R. 1868, Astron. Mitt: Zurich, 24, III.Google Scholar