Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T23:06:18.764Z Has data issue: false hasContentIssue false

Equation-of-State effects on Gravitational Waves in Core-Collapse Supernovae

Published online by Cambridge University Press:  27 February 2023

Oliver Eggenberger Andersen
Affiliation:
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
Shuai Zha
Affiliation:
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
André da Silva Schneider
Affiliation:
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
Aurore Betranhandy
Affiliation:
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
Sean M. Couch
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
Evan P. O’Connor
Affiliation:
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nuclear equation-of-state (EOS) describing newly formed proto-neutron stars (PNSs) in core-collapse supernovae (CCSNe) is yet uncertain, and varying its prescription affects multimessenger signatures in CCSN simulations. Focusing on the gravitational wave (GW) signal, we demonstrate the effect of varying parameter values in the EOS. We conclude that an especially important parameter is the effective mass of nucleons which affect thermal properties and subsequently the PNS compactness, regulating the GW signal in both amplitude and frequency. By radially decomposing the GW emission, we show where in the PNS the GWs originate from.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andresen, H., Müller, B., Müller, E., Janka, H.-T., 2017, MNRAS, 468, 2032 CrossRefGoogle Scholar
Couch, S. M., Ott, C. D., 2015, ApJ, 799, 5 CrossRefGoogle Scholar
Eggenberger Andersen, O., Zha, S., da Silva Schneider, A., Betranhandy, A., Couch, S. M., O’Connor, E. P., 2021, ApJ, 923, 201 doi: 10.3847/1538-4357/ac294c CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., et al., 2000, ApJS, 131, 273 Google Scholar
Lattimer, J. M., Swesty, D. F., 1991, NuPhA, 535, 331 Google Scholar
Margueron, J., Hoffmann Casali, R., Gulminelli, F., 2018, PhRvC, 97, 025805 Google Scholar
Mezzacappa, A., Marronetti, P., Landfield, R. E., Lentz, E. J., Yakunin, K. N., Bruenn, S. W., Hix, W. R., et al., 2020, PhRvD, 102, 023027 Google Scholar
Müller, B., Janka, H.-T., Marek, A., 2013, ApJ, 766, 43 CrossRefGoogle Scholar
Murphy, J. W., Ott, C. D., Burrows, A., 2009, ApJ, 707, 1173 Google Scholar
Radice, D., Morozova, V., Burrows, A., Vartanyan, D., Nagakura, H., 2019, ApJL, 876, L9 CrossRefGoogle Scholar
Powell, J., Müller, B., 2019, MNRAS, 487, 1178 CrossRefGoogle Scholar
Schneider, A. S., Roberts, L. F., Ott, C. D., O’Connor, E., 2019, PhRvC, 100 Google Scholar
Torres-Forné, A., Cerdá-Durán, P., Passamonti, A., Font, J. A., 2018, MNRAS, 474, 5272 CrossRefGoogle Scholar
Woosley, S. E., Heger, A., 2007, PhR, 442, 269 Google Scholar