Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T10:45:41.322Z Has data issue: false hasContentIssue false

The environments and hosts of neutron star mergers and short GRBs

Published online by Cambridge University Press:  27 February 2023

Christina C. Thöne*
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, Fricova 298, Ondrejov 251 65, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hosts of binary neutron star (BNS) mergers and hence short GRBs are not only galaxies with old stellar populations, infact most short GRB hosts are at least mildly star-forming galaxies. According to theoretical studies of merger populations, both short and long merging time-scales are expected. The immediate environments of BNS mergers are not as directly related to the property of the progenitor system as for long GRBs, since the system usually travelled a significant distance from their birth place. However, studying the stellar population properties across the host can still give us vital information on the contribution of formation channels and on merger timescales. Here we review the properties of NS merger hosts in emission using integrated-light and resolved observations. The afterglows of short GRBs furthermore serve to study the interstellar medium in their host galaxies in absorption. We present our best example to date, GRB 160410A at z = 1.7, one of the highest redshift short GRBs.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Phys. Rev. Lett., 119, 161101 CrossRefGoogle ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJL, 848, L12 Google Scholar
Agüí Fernández, J. F., Thöne, C. C., Kann, D. A., et al. 2021, arXiv:2109.13838 Google Scholar
Belczynski, K., Askar, A., Arca-Sedda, M., et al. 2018, A&A, 615, A91 Google Scholar
Berger, E. 2014, ARAA, 52, 43 CrossRefGoogle Scholar
Blanchard, P. K., Berger, E., Fong, W., et al. 2017, ApJL, 848, L22 CrossRefGoogle Scholar
Bloom, J. S., Prochaska, J. X., Pooley, D., et al. 2006, ApJ, 638, 354 CrossRefGoogle Scholar
Chruslinska, M., Belczynski, K., Klencki, J., et al. 2018, MNRAS, 474, 2937 CrossRefGoogle Scholar
De Cia, A., Ledoux, C., Mattsson, L., et al. 2016, A&A, 596, A97 Google Scholar
De Cia, A., Ledoux, C., Petitjean, P., et al. 2018, A&A, 611, A76 Google Scholar
de Ugarte Postigo, A., Fynbo, J. P. U., Thöne, C. C., et al. 2012, A&A, 548, A11 Google Scholar
de Ugarte Postigo, A., Thöne, C. C., Rowlinson, A., et al. 2014, A&A, 563, A62 Google Scholar
de Ugarte Postigo, A., Thöne, C. C., Martn, S., et al. 2020, A&A, 633, A68 Google Scholar
Dichiara, S., Troja, E., Beniamini, P., et al. 2021, ApJL, 911, L28 CrossRefGoogle Scholar
Dimple, Misra, K., Ghosh, A., et al. 2022, arXiv:2202.01191 Google Scholar
Fong, W. & Berger, E. 2013, ApJ, 776, 18 Google Scholar
Gehrels, N., Norris, J. P., Barthelmy, S. D., et al. 2006, Nature, 444, 1044 CrossRefGoogle Scholar
Giacobbo, N. & Mapelli, M. 2018, MNRAS, 480, 2011 CrossRefGoogle Scholar
Goldstein, A., Veres, P., Burns, E., et al. 2017, ApJL, 848, L14 CrossRefGoogle Scholar
Hjorth, J., Watson, D., Fynbo, J. P. U., et al. 2005, Nature, 437, 859 CrossRefGoogle Scholar
Kann, D. A., Klose, S., Zhang, B., et al. 2011, ApJ, 734, 96 CrossRefGoogle Scholar
Krogager, J.-K. 2018, arXiv:1803.01187 Google Scholar
Krühler, T., Malesani, D., Fynbo, J. P. U., et al. 2015, A&A, 581, A125 Google Scholar
Levan, A. J., Lyman, J. D., Tanvir, N. R., et al. 2017, ApJL, 848, L28 CrossRefGoogle Scholar
Lyman, J. D., Levan, A. J., Tanvir, N. R., et al. 2017, mnras, 467, 1795 Google Scholar
Mapelli, M. & Giacobbo, N. 2018, MNRAS, 479, 4391 CrossRefGoogle Scholar
Nicuesa Guelbenzu, A. M., Klose, S., Schady, P., et al. 2021, A&A, 650, A117 Google Scholar
Nicuesa Guelbenzu, A. M., Klose, S., Schady, P., et al. 2021, ApJ, 923, 38 CrossRefGoogle Scholar
Nugent, A. E., Fong, W., Dong, Y., et al. 2020, ApJ, 904, 52 CrossRefGoogle Scholar
Perley, D. A., Tanvir, N. R., Hjorth, J., et al. 2016, ApJ, 817, 8 CrossRefGoogle Scholar
Rowlinson, A., Wiersema, K., Levan, A. J., et al. 2010, MNRAS, 408, 383 CrossRefGoogle Scholar
Salvaterra, R., Della Valle, M., Campana, S., et al. 2009, Nature, 461, 1258 CrossRefGoogle Scholar
Selsing, J., Vreeswijk, P. M., Japelj, J., et al. 2016, GRB Coordinates Network, No. 19274Google Scholar
Selsing, J., Krühler, T., Malesani, D., et al. 2018, A&A, 616CrossRefGoogle Scholar
Tanvir, N. R., Fox, D. B., Levan, A. J., et al. 2009, Nature, 461, 1254 CrossRefGoogle Scholar
Tanvir, N. R., Levan, A. J., Fruchter, A. S., et al. 2013, Nature, 500, 547 CrossRefGoogle Scholar
Yu, J., Song, H., Ai, S., et al. 2021, ApJ, 916, 54 CrossRefGoogle Scholar