Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T00:39:04.805Z Has data issue: false hasContentIssue false

Environmental density of galaxies from SDSS via Voronoi tessellation

Published online by Cambridge University Press:  12 October 2016

D. Dobrycheva
Affiliation:
Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine email: [email protected], [email protected], [email protected]
O. Melnyk
Affiliation:
Astronomical Observatory, Taras Shevchenko National University of Kyiv, 3 Observatorna St., 04053 Kyiv, Ukraine email: [email protected] Dipartimento di Fisica e Astronomia, Universita di Bologna
A. Elyiv
Affiliation:
Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine email: [email protected], [email protected], [email protected] Dipartimento di Fisica e Astronomia, Universita di Bologna
I. Vavilova
Affiliation:
Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of our work was to determine the environmental density of galaxies from SDSS DR9 using the Voronoi tessellation. We constructed the 3D Voronoi tessellation for the volume-limited galaxy sample within 0.02 <z<0.1 and -24 Mr-20.7 using an inverse volume of Voronoi cell as a parameter describing the local environmental density of a galaxy. It allowed us to inspect the morphology - density relation. We obtained that the early type galaxies prefer to reside in the Voronoi cells of smaller volumes (i.e. dense environments) than the late type galaxies, which are located in the larger Voronoi cells (i.e. sparse environments).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Blanton, M. R., Lupton, R. H., Schlegel, D. J., et al. 2005, ApJ, 631, 208 Google Scholar
Dobrycheva, D. V. 2013, Odessa Astronomical Publications, 26, 187 Google Scholar
Dressler, A. 1980, AJ, 236, 351 Google Scholar
Einasto, M., Einasto, J., Muller, V. et al. 2003, A&A, 401, 851 Google Scholar
Elyiv, A. A., Melnyk, O. V., & Vavilova, I. B. 2009, MNRAS, 394, 1409 CrossRefGoogle Scholar
Melnyk, O. V., Elyiv, A. A., & Vavilova, I. B. 2006, Kinemat. Fiz. Nebesn. Tel, 22, 283 Google Scholar
Melnyk, O. V., Dobrycheva, D. V., & Vavilova, I. B. 2012, Astrophysics, 55, 293 CrossRefGoogle Scholar
Scoville, N., Arnouts, S., Aussel, H. et al. 2013, ApJS, 206, 3 Google Scholar
Vavilova, I. B., Melnyk, O. V., & Elyiv, A. A. 2009, AN, 330, 1004 Google Scholar
Way, M. J., Gazis, P. R., & Scargle, J. D. 2011, ApJ, 727, 48 Google Scholar
Weinmann, S. M., van den Bosch, F. C., Yang, X., & Mo, H. J. 2006, MNRAS, 366, 2 Google Scholar
Zaninetti, L., 2010, Rev. Mexicana AyA, 46, 115 Google Scholar