No CrossRef data available.
Article contents
Entrainment in 3D hydrodynamics simulations of neon burning
Published online by Cambridge University Press: 29 August 2024
Abstract
Our knowledge of massive star evolution is limited by uncertainties linked with multi-dimensional processes taking place in stellar interiors. Important examples are convective boundary mixing (CBM) and entrainment, which are implemented in 1D stellar evolution models assuming simplified prescriptions. 3D hydrodynamics models can improve these prescriptions by studying realistic multi-D processes for a short timerange (minutes or hours). In these proceedings, we present results coming from a new set of high-resolution hydrodynamics simulations of a neon-burning shell in a massive star, and discuss how the entrainment law can be calibrated from 3D models and then used to improve 1D stellar evolution prescriptions.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 18 , Symposium S361: Massive Stars Near and Far , May 2022 , pp. 353 - 358
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union