No CrossRef data available.
Article contents
Enrichment of Heavy Elements in Chemo-Dynamical Simulations of Dwarf Galaxies
Published online by Cambridge University Press: 30 October 2019
Abstract
Abundances of heavy elements in dwarf galaxies reflect their early evolutionary histories. Recent astronomical observations have shown that there are star-to-star scatters in the abundances of r-process elements and the decreasing trend of Zn toward higher metallicity in extremely metal-poor stars. However, the enrichment of heavy elements is not well understood. Here we performed a series of high-resolution N-body/smoothed particle hydrodynamics simulations of dwarf galaxies. We find that neutron star mergers can explain ratios of r-process elements to iron in dwarf galaxies due to their suppressed star formation rates. We also find that stars with [Zn/Fe] ≳ 0.5 reflect the ejecta from electron-capture supernovae. Inhomogeneity of the metals in the interstellar medium causes the scatters of heavy elements. We estimate that the timescale of metal mixing is ≲ 40 Myr using heavy element abundances in metal-poor stars.
Keywords
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 14 , Symposium S344: Dwarf Galaxies: From the Deep Universe to the Present , August 2018 , pp. 197 - 200
- Copyright
- © International Astronomical Union 2019