Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T17:50:51.171Z Has data issue: false hasContentIssue false

Electromagnetic Signatures of Recoiling Black Holes

Published online by Cambridge University Press:  03 June 2010

S. Komossa*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent numerical relativity simulations predict that coalescing supermassive black holes (SMBHs) can receive kick velocities up to several thousands of kilometers per second due to anisotropic emission of gravitational waves, leading to long-lived oscillations of the SMBHs in galaxy cores and even SMBH ejections from their host galaxies. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of these “kicks” and “superkicks” has a wide range of exciting astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy growth at the epoch of structure formation, modes of feedback, unified models of AGN, and the number of obscured AGN. SMBH recoil oscillations beyond the torus scale can be on the order of a quasar lifetime, thus potentially affecting a large fraction of the quasar population. We discuss how this might explain the long-standing puzzle of a deficiency of obscured type 2 quasars at high luminosities. Observational signatures of recoiling SMBHs are discussed and results from follow-up studies of the candidate recoiling SMBH SDSSJ0927+2943 are presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baker, J. G., et al. 2008, ApJ, 682, L29CrossRefGoogle Scholar
Bonning, E. W., Shields, G. A., & Salviander, S. 2007, ApJ, 666, L13Google Scholar
Bogdanović, T., Reynolds, C. S., & Miller, C. 2007, ApJ, 661, L147Google Scholar
Bogdanović, T., et al. 2009, ApJ, 697, L288Google Scholar
Brügmann, B., et al. 2008, Phys. Rev. D., 77, 124047Google Scholar
Campanelli, M., et al. 2007, ApJ, 659, L5Google Scholar
Campanelli, M., et al. 2009, Phys. Rev. D., 79, 084010Google Scholar
Corrales, L. R., Haiman, Z., & MacFadyen, A. 2009, submitted to MNRAS [arXiv:0910.0014]Google Scholar
Dain, S., Lousto, C., & Zlochower, Y. 2008, Phys. Rev. D., 78, 024039Google Scholar
Decarli, R., Reynolds, M. T., & Dotti, M. 2009, MNRAS, 397, 458CrossRefGoogle Scholar
de la Fuente Marcos, R., & de la Fuente Marcos, C. 2008, ApJ, 677, L47Google Scholar
Devecchi, B., et al. 2009, MNRAS, 394, 633Google Scholar
Dotti, M., et al. 2009, MNRAS, 398, L73Google Scholar
Fujita, Y. 2009, ApJ, 691, 1050Google Scholar
Gonzáles, J. A., et al. 2007, Phys. Rev. Lett., 98, 231101CrossRefGoogle Scholar
Gonzáles, J. A., Sperhake, U., & Brügmann, B. 2009, Phys. Rev. D., 79, 124006Google Scholar
Gualandris, A. & Merritt, D. 2008, ApJ, 678, 780Google Scholar
Heckman, T., et al. 2009, ApJ, 695, 363CrossRefGoogle Scholar
Haiman, Z. 2004, ApJ, 613, 36Google Scholar
Hasinger, G. 2008, A&A, 490, 905Google Scholar
Healy, J., et al. 2009, Phys. Rev. Lett., 102, 041101Google Scholar
Herrmann, F., et al. 2007, Phys. Rev. D, 76, 084032Google Scholar
Komossa, S. & Bade, N. 1999, A&A 343, 775Google Scholar
Komossa, S. & Merritt, D. 2008a, ApJ, 683, L21 (KM08a)Google Scholar
Komossa, S. & Merritt, D. 2008b, ApJ, 689, L89CrossRefGoogle Scholar
Komossa, S., Zhou, H., & Lu, H. 2008, ApJ, 678, L81 (KZL08)CrossRefGoogle Scholar
Kornreich, D. A. & Lovelace, R. V. E. 2008, ApJ, 681, 104Google Scholar
Le Tiec, A., Blanchet, L., & Will, C. M. 2009 [arXiv:0910.4594]Google Scholar
Libeskind, N. I., et al. 2006, MNRAS, 368, 1381CrossRefGoogle Scholar
Lippai, Z., et al. 2008, ApJ, 676, L5Google Scholar
Liu, F., et al. 2003, MNRAS, 340, 411CrossRefGoogle Scholar
Loeb, A. 2007, Phys. Rev. Lett., 99, 041103CrossRefGoogle Scholar
Lousto, C. & Zlochower, Y. 2009, Phys. Rev. D., 79, 064018CrossRefGoogle Scholar
Lousto, C., Campanelli, M., & Zlochower, Y. 2009 [arXiv:0904.3541]Google Scholar
Madau, P., et al. 2004, ApJ, 604, 484Google Scholar
Madau, P. & Quataert, E. 2004, ApJ, 606, L17Google Scholar
Megevand, M., et al. 2009, Phys. Rev. D., 80, 024012Google Scholar
Merritt, D., et al. 2004, ApJ, 607, L9Google Scholar
Merritt, D., et al. 2006, MNRAS, 367, 1746Google Scholar
Merritt, D., Schnittman, J., & Komossa, S. 2009, ApJ, 699, 1690Google Scholar
Miller, S. H. & Matzner, R. A. 2009, GReGr, 41, 525CrossRefGoogle Scholar
Milosavljević, M. & Phinney, S. 2005, ApJ, 622, L93CrossRefGoogle Scholar
Natarajan, P. & Armitage, P. J. 1999, MNRAS, 309, 961Google Scholar
O'Leary, R. M. & Loeb, A. 2009, MNRAS, 395, 781Google Scholar
Perego, A., et al. 2009, MNRAS, 399, 2249Google Scholar
Peres, A. 1962, Phys. Rev., 128, 2471Google Scholar
Peterson, B. M. 2007, in The Central Engine of Active Galactic Nuclei, ed. Ho, L. C. & Wang, J.-M. (San Francisco: Astronomical Society of the Pacific), p. 3Google Scholar
Rossi, E. M., et al. 2009, MNRAS, in press [arXiv:0910.0002]Google Scholar
Scheuer, P. A. G. & Feiler, R. 1996, MNRAS, 282, 291Google Scholar
Schnittman, J. D. 2007, ApJ, 667, L133Google Scholar
Schnittman, J. D. & Buonanno, A. 2007, ApJ, 662, L63Google Scholar
Schnittman, J. D. & Krolik, J. H. 2008, ApJ, 684, 835Google Scholar
Shields, G. A. & Bonning, E. W. 2008, ApJ, 682, 758Google Scholar
Shields, G. A., Bonning, E. W., & Salviander, S. 2009 ApJ, 696, 1367CrossRefGoogle Scholar
Sesana, A. 2007, MNRAS, 382, L6CrossRefGoogle Scholar
Tanaka, T. & Haiman, Z. 2009, ApJ, 696, 1798Google Scholar
van Meter, J. R., et al. 2009 [arXiv:0908.0023]Google Scholar
Vivek, M., et al. 2009, MNRAS, 400, L6Google Scholar
Volonteri, M. 2007, ApJ, 663, L5Google Scholar
Volonteri, M. & Madau, P. 2008, ApJ, 687, L57Google Scholar