Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T03:35:24.012Z Has data issue: false hasContentIssue false

Eight new astrometry results of 6.7 GHz CH3OH and 22 GHz H2O masers in the Perseus arm

Published online by Cambridge University Press:  16 July 2018

Nobuyuki Sakai
Affiliation:
Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report astrometric results for seven 6.7 GHz CH3OH and one 22 GHz H2O masers in the Perseus arm with VLBA and VERA observations. Among the eight sources, we succeeded in obtaining trigonometric parallaxes for all sources, except G098.03+1.44 at 6.7 GHz band. By combining our results with previous astrometry results (Choi et al. 2014), we determined an arm width of 0.41 kpc and a pitch angle of 8.2 ± 2.5 deg for the Perseus arm. By using a large sample of the Perseus arm (26 sources), we examined the three-dimensional, non-circular motions (defined as U, V and W) of sources in the Perseus arm as a function of the distance (D) perpendicular to the arm. Interestingly, we found a weighted mean of <U > = 12.7 ± 1.2 km s−1 for 14 sources with D < 0 kpc (i.e. sources on the interior side of the arm) and <U > = −0.3 ± 1.5 km s−1 for 12 sources with D > 0 kpc (i.e. sources exterior to the arm). These findings might be the first observational indication of the ”damping phase of a spiral arm” suggested by the non-steady spiral arm model of Baba et al. (2013). The small pitch angle of the Perseus arm (< 10 deg) also supports the damping phase, based on ”pitch angle vs. arm amplitude” relation shown in Grøsbol et al. (2004).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Baba, J., Saitoh, T. R., & Wada, K., 2013, ApJ, 763, 46Google Scholar
Choi, Y., Hachisuka, K., Reid, M. J., Brunthaler, A., Menten, K. M., et al., 2014, ApJ, 790, 99Google Scholar
Dame, T. M., Hartmann, D., & Thaddeus, P., 2001, ApJ, 547, 792CrossRefGoogle Scholar
Fujii, M., Baba, J., Saitoh, T. R., Makino, J., Kokubo, E., & Wada, K., 2011, ApJ, 730, 109Google Scholar
Goldreich, P.,& Lynden-Bell, D., 1965, MNRAS, 130, 125Google Scholar
Grøsbol, P., Patsis, P. A., & Pompei, E., 2004, A&A, 423, 849Google Scholar
Lin, C. C. & Shu, F. H., 1964, ApJ, 140, 646CrossRefGoogle Scholar
Persic, M, Salucci, P. & Stel, F., 1996, MNRAS, 281, 27Google Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., et al., 2014a, ApJ, 783, 130Google Scholar
Reid, M. J. & Honma, M., 2014b, ARA&A, 52, 339Google Scholar
Reid, M. J., Brunthaler, A., Menten, K. M., Sanna, A., Xu, Y., Li, J. J., et al., 2017, AJ, 154, 63Google Scholar
Sakai, N., Honma, M., Nakanishi, H., Sakanoue, H., Kurayama, T., et al., 2012, PASJ, 64, 108CrossRefGoogle Scholar
Sakai, N., Nakanishi, H., Matsuo, M., Koide, N., Tezuka, D., et al., 2015, PASJ, 67, 69CrossRefGoogle Scholar
Xu, Y., Reid, M. J., Menten, K., Sakai, N., Li, J., Brunthaker, A., et al., 2016, SciA, 2, 9Google Scholar