Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:35:54.483Z Has data issue: false hasContentIssue false

Effects of Stellar Collisions on Star Cluster Evolution and Core Collapse

Published online by Cambridge University Press:  01 September 2007

Sourav Chatterjee
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA email: [email protected], [email protected], [email protected]
John M. Fregeau
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA email: [email protected], [email protected], [email protected]
Frederic A. Rasio
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We systematically study the effects of collisions on the overall dynamical evolution of dense star clusters using Monte Carlo simulations over many relaxation times. We derive many observable properties of these clusters, including their core radii and the radial distribution of collision products. We also study different aspects of collisions in a cluster taking into account the shorter lifetimes of more massive stars, which has not been studied in detail before. Depending on the lifetimes of the significantly more massive collision products, observable properties of the cluster can be modified qualitatively; for example, even without binaries, core collapse can sometimes be avoided simply because of stellar collisions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Fekadu, N., Sandquist, E. L., & Bolte, M. 2007, ApJ 663, 277Google Scholar
Fregeau, J. M. & Rasio, F. A. 2007, ApJ 658, 1047Google Scholar
Fregeau, J. M., Cheung, P., Potegies Zwart, S. F., & Rasio, F. A. 2004, MNRAS 352, 1CrossRefGoogle Scholar
Goodman, J. & Hernquist, L. 1991, ApJ 378, 637CrossRefGoogle Scholar
Goodman, J. & Hut, P. 1989, Nature 339, 40CrossRefGoogle Scholar
Gürkan, M. A., Fregeau, J. M., & Rasio, F. A. 2006, ApJ 640, L39CrossRefGoogle Scholar
Hills, J. G. & Day, C. A. 1976, Aplett 17, 87Google Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS 329, 897CrossRefGoogle Scholar
Joshi, K. J., Nave, C. P., & Rasio, F. A. 2001, ApJ 550, 691CrossRefGoogle Scholar
Joshi, K. J., Rasio, F. A., & Portegies Zwart, S. 2000, ApJ 540, 969Google Scholar
Lee, H. M. 1987, ApJ 319, 801CrossRefGoogle Scholar
Leigh, N., Sills, A., & Knigge, C. 2007, ApJ 661, 210Google Scholar
Lombardi, J. C. Jr., Proulx, Z. F., Dooley, K. L., Theriault, E. M., Ivanova, N., & Rasio, F. A. 2006, ApJ 640, 441CrossRefGoogle Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2007, MNRAS 379, L40CrossRefGoogle Scholar
Mapelli, M., Sigurdsson, S., Ferraro, F. R., Colpi, M., Possenti, A., & Lanzoni, B. 2006, MNRAS 373, 361CrossRefGoogle Scholar
Merritt, D., Piatek, S., Portegies Zwart, S., & Hemsendorf, M. 2004, ApJLett 608, L25CrossRefGoogle Scholar
Sills, A., Faber, J. A., Lombardi, J. C. Jr., Rasio, F. A., & Warren, A. R. 2001, ApJ 548, 323CrossRefGoogle Scholar
Sills, A., Lombardi, J. C. Jr., Bailyn, C. D., Demarque, P., Rasio, F. A., & Shapiro, S. L. 1997, ApJ 487, 290CrossRefGoogle Scholar
Trenti, M. 2006, ArXiv Astrophysics e-prints 12040Google Scholar
Trenti, M., Ardi, E., Mineshige, S., & Hut, P. 2007, MNRAS 374, 857CrossRefGoogle Scholar
Vesperini, E. & Chernoff, D. F. 1994, ApJ 431, 231CrossRefGoogle Scholar