Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T12:49:22.237Z Has data issue: false hasContentIssue false

Effects of small-scale magnetic fields in the photosphere on surface effects for solar-like stars

Published online by Cambridge University Press:  23 December 2024

Guifang Lin
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P. R. China International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China
Yan Li
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P. R. China Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing, 100012, P. R. China University of Chinese Academy of Sciences, Beijing 100049, P. R. China International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China
Jie Su
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P. R. China Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing, 100012, P. R. China International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China
Tao Wu
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P. R. China Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing, 100012, P. R. China International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China
Yuetong Wang
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P. R. China International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic fields are important physics in stellar evolutionary theory, which seriously affects the stellar structure and evolutionary statues. The small-scale magnetic fields in the photosphere are ubiquitous, and float on the stellar surface, which usually couple with the acoustic waves, affecting the propagation of the acoustic waves. Considering the effect of the magnetic fields in the stellar photosphere on the oscillation frequencies, we calculate the asteroseismology for solar-like star KIC 11295426 and KIC 10963065. We obtain the stellar fundamental parameters, especially the strength of small-scale magnetic fields in the stellar photosphere. We find that the small-scale magnetic fields in the stellar photosphere may obviously improve the agreement between the observations and the theoretical models for two stars. The magnetic strength for KIC 11295426 and KIC 10963065 from asteroseismology are in agreement with the stellar period-activity relation.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Ball, W. H., Beeck, B., Cameron, R. H., & Gizon, L. 2016, A&A, 592, 159 Google Scholar
Ball, W. H., & Gizon, L. 2014, A&A, 568, A123 Google Scholar
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 55 CrossRefGoogle Scholar
Bellinger, E. P., Basu, S., Hekker, S., & Christensen–Dalsgaard, J. 2019, ApJ, 885, 143 CrossRefGoogle Scholar
Bogdan, T. J., Carlsson, M., Hansteen, V. H., et al. 2003, ApJ, 599, 626 CrossRefGoogle Scholar
Böhm-Vitense, E. 1958, Z. Astrophys., 46, 108 Google Scholar
Cally, P. S. 2007, Astron. Nachr., 328, 286 CrossRefGoogle Scholar
Christensen–Dalsgaard, J. 2008, Ap&SS, 316, 113 Google Scholar
Christensen–Dalsgaard, J., Däppen, W., & Lebreton, Y. 1988, Nature, 336, 634 CrossRefGoogle Scholar
Davies, G. R., Silva Aguirre, V., Bedding, T.R., et al. 2016, MNRAS, 456, 2183 CrossRefGoogle Scholar
Dziembowski, W. A., Paterno, L., & Ventura, R. 1988, A&A, 200, 213 Google Scholar
Gilliland, R. L., Marcy, G. W., Rowe, J. F., et al. 2013, ApJ, 766, 40 CrossRefGoogle Scholar
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161 CrossRefGoogle Scholar
Houdek, G., Trampedach, R., Aarslev, M. J., & Christensen–Dalsgaard, J. 2017, MNRAS, 464, L124 CrossRefGoogle Scholar
Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP, 126, 398 CrossRefGoogle Scholar
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943 CrossRefGoogle Scholar
Kayhan, C., Yldz, M., & Celik Orhan, Z. 2019, MNRAS, 490, 1509 CrossRefGoogle Scholar
Kjeldsen, H., Bedding, T. R., & Christensen–Dalsgaard, J. 2008, ApJL, 683, L175 CrossRefGoogle Scholar
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJL, 713, L79 CrossRefGoogle Scholar
Li, Y., Zhang, Q. S., Wu, T., et al. 2021, ApJ, 916, 107 CrossRefGoogle Scholar
Marcy, G.W., Isaacson, H., Howard, A.W., et al. 2014, ApJS, 210, 20 CrossRefGoogle Scholar
Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34 CrossRefGoogle Scholar
Rosenthal, C. S., Bogdan, T. J., Carlsson, M., et al. 2002, ApJ, 564, 508 CrossRefGoogle Scholar
Schou, J., & Birch, A. C. 2020, A&A, 638, 51 Google Scholar
Silva Aguirre, V., Davies, G. R., Basu, S., et al. 2015, MNRAS, 452, 2127 CrossRefGoogle Scholar
Soriano, M., & Vauclair, S. 2008, A&A, 488, 975 Google Scholar
Suto, Y., Kamiaka, S., & Benomar, O. 2019, AJ, 157, 172 CrossRefGoogle Scholar