Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:52:09.737Z Has data issue: false hasContentIssue false

Effects of rotation and surface forcing on deep stellar convection zones

Published online by Cambridge University Press:  23 December 2024

Petri J. Käpylä*
Affiliation:
Leibniz-Insitute for Solar Physics (KIS), Schöneckstraße 6, 79104 Freiburg im Breisgau, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The canonical undestanding of stellar convection has recently been put under doubt due to helioseismic results and global 3D convection simulations. This “convective conundrum” is manifested by much higher velocity amplitudes in simulations at large scales in comparison to helioseismic results, and the difficulty in reproducing the solar differential rotation and dynamo with global 3D simulations. Here some aspects of this conundrum are discussed from the viewpoint of hydrodynamic Cartesian 3D simulations targeted at testing the rotational influence and surface forcing on deep convection. More specifically, the dominant scale of convection and the depths of the convection zone and the weakly subadiabatic – yet convecting – Deardorff zone are discussed in detail.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aurnou, J. M., Horn, S., & Julien, K. 2020, Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings. Physical Review Research, 2(4), 043115.CrossRefGoogle Scholar
Barekat, A. & Brandenburg, A. 2014, Near-polytropic stellar simulations with a radiative surface. A&A, 571, A68.Google Scholar
Barker, A. J., Dempsey, A. M., & Lithwick, Y. 2014, Theory and Simulations of Rotating Convection. ApJ, 791(1), 13.CrossRefGoogle Scholar
Böhm-Vitense, E. 1958, Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. ZAp, 46, 108.Google Scholar
Brandenburg, A. 2016, Stellar mixing length theory with entropy rain. ApJ, 832, 6.CrossRefGoogle Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S., & Toomre, J. 2011, Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star. ApJ, 731, 69.CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope. ApJ, 614, 10731098.CrossRefGoogle Scholar
Cattaneo, F., Brummell, N. H., Toomre, J., Malagoli, A., & Hurlburt, N. E. 1991, Turbulent compressible convection. ApJ, 370, 282294.CrossRefGoogle Scholar
Chan, K. L. 2007, Rotating convection in f-boxes: Faster rotation. Astron. Nachr., 328, 1059.CrossRefGoogle Scholar
Christensen, U. R. 2002, Zonal flow driven by strongly supercritical convection in rotating spherical shells. Journal of Fluid Mechanics, 470(1), 115133.CrossRefGoogle Scholar
Cossette, J.-F. & Rast, M. P. 2016, Supergranulation as the Largest Buoyantly Driven Convective Scale of the Sun. ApJ, 829, L17.CrossRefGoogle Scholar
Deardorff, J. W. 1961, On the Direction and Divergence of the Small-Scale Turbulent Heat Flux. J. Atmosph. Sci., 18, 540548.Google Scholar
Deardorff, J. W. 1966, The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory. J. Atmosph. Sci., 23, 503506.2.0.CO;2>CrossRefGoogle Scholar
Fan, Y. & Fang, F. 2014, A Simulation of Convective Dynamo in the Solar Convective Envelope: Maintenance of the Solar-like Differential Rotation and Emerging Flux. ApJ, 789, 35.CrossRefGoogle Scholar
Featherstone, N. A. & Hindman, B. W. 2016, The Emergence of Solar Supergranulation as a Natural Consequence of Rotationally Constrained Interior Convection. ApJ, 830, L15.CrossRefGoogle Scholar
Gastine, T., Yadav, R. K., Morin, J., Reiners, A., & Wicht, J. 2014, From solar-like to antisolar differential rotation in cool stars. MNRAS, 438, L76L80.CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, Magnetic Cycles in Global Large-eddy Simulations of Solar Convection. ApJ, 715, L133L137.CrossRefGoogle Scholar
Gilman, P. A. 1977, Nonlinear Dynamics of Boussinesq Convection in a Deep Rotating Spherical Shell. I. Geophys. Astrophys. Fluid Dynam., 8, 93135.CrossRefGoogle Scholar
Gilman, P. A. 1983, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II - Dynamos with cycles and strong feedbacks. ApJS, 53, 243268.CrossRefGoogle Scholar
Glatzmaier, G. A. 1985, Numerical simulations of stellar convective dynamos. II - Field propagation in the convection zone. ApJ, 291, 300307.CrossRefGoogle Scholar
Greer, B. J., Hindman, B. W., Featherstone, N. A., & Toomre, J. 2015, Helioseismic Imaging of Fast Convective Flows throughout the Near-surface Shear Layer. ApJ, 803, L17.CrossRefGoogle Scholar
Hanasoge, S. M., Duvall, Thomas L., J., & DeRosa, M. L. 2010, Seismic Constraints on Interior Solar Convection. ApJ, 712(1), L98L102.CrossRefGoogle Scholar
Hanasoge, S. M., Duvall, T. L., & Sreenivasan, K. R. 2012, Anomalously weak solar convection. Proc. Natl. Acad. Sci., 109, 1192811932.CrossRefGoogle ScholarPubMed
Hotta, H. 2017, Solar Overshoot Region and Small-scale Dynamo with Realistic Energy Flux. ApJ, 843, 52.CrossRefGoogle Scholar
Hotta, H., Iijima, H., & Kusano, K. 2019, Weak influence of near-surface layer on solar deep convection zone revealed by comprehensive simulation from base to surface. Science Advances, 5(1), 2307.CrossRefGoogle ScholarPubMed
Hotta, H., Kusano, K., & Shimada, R. 2022, Generation of Solar-like Differential Rotation. ApJ, 933(2), 199.CrossRefGoogle Scholar
Käpylä, P. J. 2019, Overshooting in simulations of compressible convection. A&A, 631, A122.Google Scholar
Käpylä, P. J. 2021, Prandtl number dependence of stellar convection: Flow statistics and convective energy transport. A&A, 655, A78.Google Scholar
Käpylä, P. J. 2023,a Convective scale and subadiabatic layers in simulations of rotating compressible convection. arXiv e-prints, arXiv:2310.12855.Google Scholar
Käpylä, P. J. 2023,b Transition from anti-solar to solar-like differential rotation: Dependence on Prandtl number. A&A, 669b, A98.CrossRefGoogle Scholar
Käpylä, P. J., Browning, M. K., Brun, A. S., Guerrero, G., & Warnecke, J. 2023, Simulations of Solar and Stellar Dynamos and Their Theoretical Interpretation. Space Sci. Rev., 219(7), 58.CrossRefGoogle ScholarPubMed
Käpylä, P. J., Gent, F. A., Olspert, N., Käpylä, M. J., & Brandenburg, A. 2020, Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection. Geophysical and Astrophysical Fluid Dynamics, 114(1-2), 834.CrossRefGoogle Scholar
Käpylä, P. J., Käpylä, M. J., & Brandenburg, A. 2014, Confirmation of bistable stellar differential rotation profiles. A&A, 570, A43.Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012, Cyclic Magnetic Activity due to Turbulent Convection in Spherical Wedge Geometry. ApJ, 755, L22.CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J., & Hackman, T. 2011, Starspots due to Large-scale Vortices in Rotating Turbulent Convection. ApJ, 742, 34.CrossRefGoogle Scholar
Käpylä, P. J., Rheinhardt, M., Brandenburg, A., Arlt, R., Käpylä, M. J., Lagg, A., Olspert, N., & Warnecke, J. 2017, Extended Subadiabatic Layer in Simulations of Overshooting Convection. ApJ, 845, L23.CrossRefGoogle Scholar
Kupka, F. & Muthsam, H. J. 2017, Modelling of stellar convection. Liv. Rev. Comp. Astrophys., 3, 1.CrossRefGoogle ScholarPubMed
O’Mara, B., Miesch, M. S., Featherstone, N. A., & Augustson, K. C. 2016, Velocity amplitudes in global convection simulations: The role of the Prandtl number and near-surface driving. Adv. Space Res., 58, 14751489.CrossRefGoogle Scholar
Code Collaboration, Pencil, Brandenburg, A., Johansen, A., Bourdin, P., Dobler, W., Lyra, W., Rheinhardt, M., Bingert, S., Haugen, N., Mee, A., Gent, F., Babkovskaia, N., Yang, C.-C., Heinemann, T., Dintrans, B., Mitra, D., Candelaresi, S., Warnecke, J., Käpylä, P., Schreiber, A., Chatterjee, P., Käpylä, M., Li, X.-Y., Krüger, J., Aarnes, J., Sarson, G., Oishi, J., Schober, J., Plasson, R., Sandin, C., Karchniwy, E., Rodrigues, L., Hubbard, A., Guerrero, G., Snodin, A., Losada, I., Pekkilä, J., & Qian, C. 2021, The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained. The Journal of Open Source Software, 6(58), 2807.CrossRefGoogle Scholar
Proxauf, B. 2021,. Observations of large-scale solar flows. PhD thesis, Georg August University of Göttingen, Germany.Google Scholar
Roxburgh, L. W. & Simmons, J. 1993, Numerical studies of convective penetration in plane parallel layers and the integral constraint. A&A, 277, 93.Google Scholar
Spiegel, E. A. 1962, Thermal Turbulence at Very Small Prandtl Number. J. Geophys. Res., 67(3), 3063.CrossRefGoogle Scholar
Spruit, H. 1997, Convection in stellar envelopes: a changing paradigm. Mem. Soc. Astron. Italiana, 68, 397.Google Scholar
Stein, R. F. & Nordlund, A. 1989, Topology of convection beneath the solar surface. ApJ, 342, L95L98.CrossRefGoogle Scholar
Stevenson, D. J. 1979, Turbulent thermal convection in the presence of rotation and a magnetic field: A heuristic theory. Geophysical and Astrophysical Fluid Dynamics, 12(1), 139169.CrossRefGoogle Scholar
Thompson, M. J., Christensen–Dalsgaard, J., Miesch, M. S., & Toomre, J. 2003, The Internal Rotation of the Sun. ARA&A, 41, 599643.Google Scholar
Tremblay, P.-E., Ludwig, H.-G., Freytag, B., Fontaine, G., Steffen, M., & Brassard, P. 2015, Calibration of the Mixing-length Theory for Convective White Dwarf Envelopes. ApJ, 799, 142.CrossRefGoogle Scholar
Vasil, G. M., Julien, K., & Featherstone, N. A. 2021, Rotation suppresses giant-scale solar convection. Proceedings of the National Academy of Science, 118(31), e2022518118.CrossRefGoogle ScholarPubMed