Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T23:19:07.537Z Has data issue: false hasContentIssue false

Effects of magnetic braking and tidal friction on hot Jupiters

Published online by Cambridge University Press:  01 November 2008

Adrian J. Barker
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK email: [email protected]
Gordon I. Ogilvie
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tidal friction is thought to be important in determining the long-term spin-orbit evolution of short-period extrasolar planetary systems. Using a simple model of the orbit-averaged effects of tidal friction (Eggleton et al. 1998), we analyse the effects of the inclusion of stellar magnetic braking on the evolution of such systems. A phase-plane analysis of a simplified system of equations, including only the stellar tide together with a model of the braking torque proposed by Verbunt & Zwaan (1981), is presented. The inclusion of stellar magnetic braking is found to be extremely important in determining the secular evolution of such systems, and its neglect results in a very different orbital history. We then show the results of numerical integrations of the full tidal evolution equations, using the misaligned spin and orbit of the XO-3 system as an example, to study the accuracy of simple timescale estimates of tidal evolution. We find that it is essential to consider coupled evolution of the orbit and the stellar spin in order to model the behaviour accurately. In addition, we find that for typical Hot Jupiters the stellar spin-orbit alignment timescale is of the same order as the inspiral time, which tells us that if a planet is observed to be aligned, then it probably formed coplanar. This reinforces the importance of Rossiter-McLaughlin effect observations in determining the degree of spin-orbit alignment in transiting systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Barker, A. J. & Ogilvie, G. I. 2009, MNRAS, in preparationGoogle Scholar
Barnes, S. A. 2003, ApJ 586, 464CrossRefGoogle Scholar
Chatterjee, S. et al. 2008, ApJ 686, 580CrossRefGoogle Scholar
Cresswell, P. et al. 2007, A&A 473, 329Google Scholar
Dobbs-Dixon, I., Lin, D. N. C., & Mardling, R. A. 2004, ApJ 610, 464CrossRefGoogle Scholar
Eggleton, P. P. and Kiseleva, L. G. and Hut, P. 1998, ApJ 499, 853CrossRefGoogle Scholar
Fabrycky, D. and Tremaine, S., 2007, ApJ 669, 1298CrossRefGoogle Scholar
Hebrard, G. et al. 2008, A&A 488, 763Google Scholar
Hut, P. 1980, A&A 92, 167Google Scholar
Hut, P. 1981, A&A 99, 126Google Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008, ApJ 678, 1396CrossRefGoogle Scholar
Jurić, M. & Tremaine, S. 2008, ApJ 686, 603CrossRefGoogle Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature 380, 606CrossRefGoogle Scholar
Lubow, S. H. and Ogilvie, G. I. 2001, ApJ 560, 997CrossRefGoogle Scholar
Mardling, R. A. & Lin, D. N. C. 2002, ApJ 573, 829CrossRefGoogle Scholar
Mayor, M. & Queloz, D. 1995, Nature 378, 355CrossRefGoogle Scholar
Ogilvie, G. I. & Lin, D. N. C. 2007, ApJ 661, 1180CrossRefGoogle Scholar
Ogilvie, G. I. & Lin, D. N. C. 2004, ApJ 610, 477CrossRefGoogle Scholar
Papaloizou, J. C. B. et al. 2007, Protostars and Planets V, 655Google Scholar
Skumanich, A. 1972, ApJ 171, 565CrossRefGoogle Scholar
Verbunt, F. & Zwaan, C. 1981, A&A 100, L7Google Scholar
Weber, E. J. & Davis, L. J. 1967, ApJ 148, 217CrossRefGoogle Scholar
Winn, J. N. 2008, ArXiv e-prints, 0807.4929CrossRefGoogle Scholar
Zahn, J.-P. 2008, Tidal dissipation in binary systems, EAS Publications Series 29, 67CrossRefGoogle Scholar