Article contents
The effect of the passage of Gliese 710 on Oort cloud comets
Published online by Cambridge University Press: 30 May 2022
Abstract
Based on observations by Bailer-Jones et al. (2018) who propose a close fly-by of the K-type star Gliese 710 in approximately 1.36 Myr we investigate the immediate influence of the stellar passage on trajectories of Oort cloud objects. Using a newly developed GPU-based N-body code (Zimmermann (2021)) we study the motion of 3.6 million testparticles in the outer Solar system where the comets are distributed in three different “layers” around the Sun and the 4 giant planets. We study the immediate influence of Gliese 710 at three passage distances of 12000, 4300, and 1200 au. Additionally, different inclinations of the approaching star are considered. Depending on the passage distance a small number of comets (mainly from the disk and flared disk) is scattered into the observable region (< 5 au) around the Sun. In addition, a huge number of comets (mainly the ones directly in the path of the passing star) shows significant changes of their perihelia. But, they will enter the inner Solar system a long time after the stellar fly-by depending on their dynamical evolution.
- Type
- Research Article
- Information
- Proceedings of the International Astronomical Union , Volume 15 , Symposium S364: Multi-scale (Time and Mass) Dynamics of Space Objects (Oct 2021) , October 2019 , pp. 178 - 183
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union
References
- 1
- Cited by