Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T11:37:57.015Z Has data issue: false hasContentIssue false

The Effect of Convective Overstability on Planet Disk Interactions

Published online by Cambridge University Press:  27 October 2016

Hubert Klahr*
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Aiara Lobo Gomes*
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We run global two dimensional hydrodynamical simulations, using the PLUTO code and the planet-disk model of Uribe et al. 2011, to investigate the effect of the convective overstability (CO) on planet-disk interactions. First, we study the long-term evolution of planet-induced vortices. We found that the CO leads to smoother planetary gap edges, thus weaker planet-induced vortices. The main result was the observation of two generation of vortices, which can pose an explanation for the location of the vortex in the Oph IRS48 system. The lifetime of the primary vortices, as well as the birth time of the secondary vortices are shown to be highly dependent on the thermal relaxation timescale. Second, we study the long-term evolution of the migration of low mass planets and assess whether the CO can prevent the saturation of the horseshoe drag. We found that the disk parameters that favour slow inward or outward migration oppose the amplification of vortices, meaning that the CO does not seem to be a good mechanism to prevent the saturation of the horseshoe drag. On the other hand, we observed a planetary trap, caused by vortices formed in the horseshoe region. This trap may be an alternative mechanism to prevent the fast type I migration rates.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2010, ApJ, 723 (2), 12411254 Google Scholar
Alibert, Y., Mordasini, C., & Benz, W. 2004, A&A, 417, L25 Google Scholar
Ataiee, S., Dullemond, C. P., Kley, W., Regály, Z., & Meheut, H. 2014, A&A, 572, A61 Google Scholar
Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214 Google Scholar
Baruteau, C. & Masset, F. 2008, ApJ, 672, 1054 CrossRefGoogle Scholar
Barge, P. & Sommeria, J. 1995, A&A, 295, L1 Google Scholar
Casoli, J. & Masset, F. S. 2009, ApJ, 703, 845 Google Scholar
Fu, W., Li, H., Lubow, S., & Li, S. 2014, ApJL, 788, L41 Google Scholar
Ida, S. & Lin, D. N. C. 2008, ApJ, 673, 487 Google Scholar
Klahr, H. H. & Bodenheimer, P. 2003, ApJ, 582, 869 Google Scholar
Klahr, H. & Bodenheimer, P. 2006, ApJ, 639, 432 Google Scholar
Klahr, H. & Hubbard, A. 2014, ApJ, 788, 21 Google Scholar
Koller, J., Li, H., & Lin, D. N. C. 2003, ApJL, 596, L91 Google Scholar
Les, R. & Lin, M.-K. 2015, MNRAS, 450, 1503 Google Scholar
Lesur, G. & Papaloizou, J. C. B. 2010, A&A, 513, A60 Google Scholar
Li, H., Lubow, S. H., Li, S., & Lin, D. N. C. 2009, ApJL, 690, L52 Google Scholar
Lobo Gomes, A., Klahr, H., Uribe, A. L., Pinilla, P., & Surville, C. 2015, ApJ, 810, 94 Google Scholar
Lobo Gomes, A., Klahr, H., Surville, C. & Uribe, A. L. submitted, ApJ Google Scholar
Lovelace, R. V. E., Li, H., Colgate, S. A., & Nelson, A. F. 1999, ApJ, 513, 805 Google Scholar
Lyra, W. & Mac Low, M.-M. 2012, ApJ, 756, 62 Google Scholar
Lyra, W. & Klahr, H. 2011, A&A, 527, A138 Google Scholar
Meheut, H., Yu, C., & Lai, D. 2012, MNRAS, 422, 2399 CrossRefGoogle Scholar
Mordasini, C., Alibert, Y., & Benz, W. 2009, A&A, 501, 1139 Google Scholar
Morohoshi, K. & Tanaka, H. 2003, MNRAS, 346, 915 Google Scholar
Ou, S., Ji, J., Liu, L., & Peng, X. 2007, ApJ, 667, 1220 Google Scholar
Paardekooper, S.-J. & Mellema, G. 2006, A&A, 459, L17 Google Scholar
Paardekooper, S.-J. & Papaloizou, J. C. B. 2009, MNRAS, 394, 2283 CrossRefGoogle Scholar
Petersen, M. R., Julien, K., & Stewart, G. R. 2007a, ApJ, 658, 1236 Google Scholar
Petersen, M. R., Stewart, G. R., & Julien, K. 2007b, ApJ, 658, 1252 Google Scholar
Raettig, N., Lyra, W., & Klahr, H. 2013, ApJ, 765 (2), 115 Google Scholar
Regály, Z., Sándor, Z., Csomoś, P., & Ataiee, S. 2013, MNRAS, 433, 2626 Google Scholar
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257 Google Scholar
Uribe, A. L., Klahr, H., Flock, M., & Henning, T. 2011, ApJ, 736, 85 Google Scholar
van der Marel, N., van Dishoeck, E. F., Bruderer, S., et al.. 2013, Science, 340, 1199 Google Scholar
Ward, W. R. 1986, Icarus, 67, 164 CrossRefGoogle Scholar
Ward, W. R. 1988, Icarus, 73, 330 Google Scholar
Ward, W. R. 1997, Icarus, 126, 261 Google Scholar
Whipple, F. L. 1972, in From Plasma to Planet, ed. Elvius, A. (New York: Wiley Interscience Division), 211 Google Scholar
Yu, C., Li, H., Li, S., Lubow, S. H., & Lin, D. N. C. 2010, ApJ, 712, 198 Google Scholar
Zhu, Z. & Stone, J. M. 2014, ApJ, 795, 53 Google Scholar