Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T08:57:57.720Z Has data issue: false hasContentIssue false

The Early Evolution of Dense Stellar Systems

Published online by Cambridge University Press:  01 September 2007

C. J. Clarke*
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The early evolution of dense stellar systems is dominated by the majority mass component – the gas – and so any credible modeling of the first Myr or so of a cluster's life inevitably involves hydrodynamical simulations. Such simulations have increased considerably in sophistication over the last few years and are now beginning to incorporate the effects of stellar feedback, thus enabling one, for the first time, to model the formation of populous clusters. In this review I focus on two issues that have arisen from the simulations – the relationship between maximum stellar mass and cluster mass, and the issue of the maximum density that is attainable during the cluster formation process. I also report on the first results of new simulations that model feedback from ionising radiation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Belkus, H., Van Bever, J., & Vanbeveren, D. 2007, ApJ, 659, 1576CrossRefGoogle Scholar
Bonnell, I., Bate, M., & Zinnecker, H. 1998, MNRAS, 298, 93CrossRefGoogle Scholar
Bonnell, I. & Bate, M. 2002, MNRAS, 336, 659CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., & Vine, S. G., 2003, MNRAS, 343, 413CrossRefGoogle Scholar
Bonnell, I., Vine, S., & Bate, M. 2004, MNRAS, 349, 735CrossRefGoogle Scholar
Bonnell, I. A. & Clarke, C. J. 1999, MNRAS, 309, 461Google Scholar
Clarke, C. J. & Bonnell, I. A.MNRAS, submittedGoogle Scholar
Dale, J., Bonnell, I., Clarke, C., & Bate, M. 2005, MNRAS, 358, 291CrossRefGoogle Scholar
Dale, J., Clark, P. C., & Bonnell, I., 2006, MNRAS, submittedGoogle Scholar
Dale, J., Ercolano, B., & Clarke, C. 2007, MNRAS, in press (arXiv:0705.3396)Google Scholar
Edgar, R. G. & Clarke, C. J. 2004, MNRAS, 349, 678Google Scholar
Elmegreen, B. G. & Elmegreen, D. M. 2001, AJ, 121, 1507Google Scholar
Figer, D. F, Najarro, F., Morris, M., McLean, I. S., Geballe, T. R., Ghez, A. M., & Langer, N. 1998, ApJ, 506, 384CrossRefGoogle Scholar
Gouliermis, D., Kontizas, M., Korakitis, R., Morgan, D. H., Kontizas, E., & Dapergolas, A. 2000, AJ, 119, 1757CrossRefGoogle Scholar
Guillout, P., Sterzik, M. F., Schmitt, J. H. M. M., Motch, C., & Neuhaeuser, R. 1998, A & A, 337, 113Google Scholar
Gürkan, M. A., Freitag, M., & Rasio, F. 2004, ApJ, 604, 632CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS, 194, 809CrossRefGoogle Scholar
Moraux, E., Lawson, W. & Clarke, C. J. 2007, A&A, 473, 163Google Scholar
Oey, S. M. & Clarke, C. J. 2005, ApJL, 620, 430CrossRefGoogle Scholar
Smith, N. & Owocki, S. P. 2006, ApJ, 645, L45Google Scholar
Spitzer, L. J. 1969, ApJ, 158, L139CrossRefGoogle Scholar
Tenorio-Tagle, G., Silich, S. A., Kunth, D., Terlevich., E., & Terlevich, R. 1999, MNRAS, 309, 332Google Scholar
Vink, J., de Koter, A., & Lamers, H. J. G. L. M. 2001, A & A, 369, 574CrossRefGoogle Scholar
Wolfire, M. G. & Casinelli, J. P. 1987, ApJ, 319, 850Google Scholar