No CrossRef data available.
Article contents
Early dynamical evolution of young substructured clusters
Published online by Cambridge University Press: 31 March 2017
Abstract
Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ”Hubble expansion” which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 12 , Symposium S316: Formation, evolution, and survival of massive star clusters , August 2015 , pp. 246 - 250
- Copyright
- Copyright © International Astronomical Union 2017