Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T03:11:17.620Z Has data issue: false hasContentIssue false

The dynamo-wind feedback loop : Assessing their non-linear interplay

Published online by Cambridge University Press:  24 September 2020

Barbara Perri
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France Institut d’Astrophysique Spatiale, CNRS, Université Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay Cedex, France
Allan Sacha Brun
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
Antoine Strugarek
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
Victor Réville
Affiliation:
IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France, 14 Avenue Edouard Belin, F-31400 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Though generated deep inside the convection zone, the solar magnetic field has a direct impact on the Earth space environment via the Parker spiral. It strongly modulates the solar wind in the whole heliosphere, especially its latitudinal and longitudinal speed distribution over the years. However the wind also influences the topology of the coronal magnetic field by opening the magnetic field lines in the coronal holes, which can affect the inner magnetic field of the star by altering the dynamo boundary conditions. This coupling is especially difficult to model because it covers a large variety of spatio-temporal scales. Quasi-static studies have begun to help us unveil how the dynamo-generated magnetic field shapes the wind, but the full interplay between the solar dynamo and the solar wind still eludes our understanding.

We use the compressible magnetohydrodynamical (MHD) code PLUTO to compute simultaneously in 2.5D the generation and evolution of magnetic field inside the star via an α-Ω dynamo process and the corresponding evolution of a polytropic coronal wind over several activity cycles for a young Sun. A multi-layered boundary condition at the surface of the star connects the inner and outer stellar layers, allowing both to adapt dynamically. Our continuously coupled dynamo-wind model allows us to characterize how the solar wind conditions change as a function of the cycle phase, and also to quantify the evolution of integrated quantities such as the Alfvén radius. We further assess the impact of the solar wind on the dynamo itself by comparing our results with and without wind feedback.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Brun, A. S. & Browning, M. K. 2017, Living Reviews in Solar Physics, 14, 4 CrossRefGoogle Scholar
Charbonneau, P. 2010, Living Reviews in Solar Physics, 7, 3 CrossRefGoogle Scholar
Dedner, A., Kemm, F., Kröner, D., et al. 2002, Journal of Computational Physics, 175, 645 CrossRefGoogle Scholar
DeRosa, M. L., Brun, A. S., & Hoeksema, J. T. 2012, ApJ, 757, 96 CrossRefGoogle Scholar
Einfeldt, B. 1988, SIAM Journal on Numerical Analysis, 25, 294 CrossRefGoogle Scholar
Gary, G. A. 2001, Sol. Phys., 203, 71 CrossRefGoogle Scholar
Gudiksen, B. V., Carlsson, M., Hansteen, V. H., et al. 2011, A&A, 531, A154 Google Scholar
Jouve, L. & Brun, A. S. 2007, A&A, 474, 239 Google Scholar
Jouve, L., Brun, A. S., Arlt, R., et al. 2008, A&A, 483, 949 Google Scholar
Keppens, R. & Goedbloed, J. P. 1999, A&A, 343, 251 Google Scholar
Luhmann, J. G., Li, Y., Arge, C. N., et al. 2002, Journal of Geophysical Research (Space Physics), 107, 1154 Google Scholar
Matt, S. & Pudritz, R. E. 2008, ApJ, 678, 1109 CrossRefGoogle Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., et al. 2008, Geophys. Res. Lett., 35, L18103 CrossRefGoogle Scholar
Moffatt, H. K. 1978, Cambridge Monographs on Mechanics and Applied Mathematics Google Scholar
Owens, M. J., Lockwood, M., & Riley, P. 2017, Scientific Reports, 7, 41548 CrossRefGoogle Scholar
Parker, E. N. 1958, ApJ, 128, 664 CrossRefGoogle Scholar
Parker, E. N. 1993, ApJ, 408, 707 CrossRefGoogle Scholar
Perri, B., Brun, A. S., Réville, V., et al. 2018, Journal of Plasma Physics, 84, 765840501 CrossRefGoogle Scholar
Pinto, R. F., Brun, A. S., Jouve, L., et al. 2011, ApJ, 737, 72 CrossRefGoogle Scholar
Pouquet, A., Frisch, U., & Leorat, J. 1976, Journal of Fluid Mechanics, 77, 321 CrossRefGoogle Scholar
Réville, V., Brun, A. S., Matt, S. P., et al. 2015, ApJ, 798, 116 CrossRefGoogle Scholar
Réville, V. & Brun, A. S. 2017, ApJ, 850, 45 CrossRefGoogle Scholar
Sakurai, T. 1985, A&A, 152, 121 Google Scholar
Spiegel, E. A. & Zahn, J.-P. 1992, A&A, 265, 106 Google Scholar
Stein, R. F. & Nordlund, Å. 2006, ApJ, 642, 1246 CrossRefGoogle Scholar
Tavakol, R., Tworkowski, A. S., Brandenburg, A., et al. 1995, A&A, 296, 269 Google Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., et al. 2003, ARA&A, 41, 599 CrossRefGoogle Scholar
Vögler, A., Shelyag, S., Schüssler, M., et al. 2005, A&A, 429, 335 Google Scholar
von Rekowski, B. & Brandenburg, A. 2006, Astronomische Nachrichten, 327, 53 CrossRefGoogle Scholar
Weber, E. J. & Davis, L. 1967, ApJ, 148, 217 CrossRefGoogle Scholar
Wedemeyer-Böhm, S., Lagg, A., & Nordlund, Å. 2009, Space Sci. Rev., 144, 317 CrossRefGoogle Scholar