Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T21:39:32.827Z Has data issue: false hasContentIssue false

Dynamos of giant planets

Published online by Cambridge University Press:  01 August 2006

F. H. Busse
Affiliation:
Institute of Physics, University of Bayreuth, D95440 Bayreuth, Germany email: [email protected]
R. Simitev
Affiliation:
Department of Mathematics, University of Glasgow, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Ardes, M., Busse, F.H., & Wicht, J. 1997, Phys. Earth Plan. Int. 99, 55CrossRefGoogle Scholar
Burke, B.F. & Franklin, K.L. 1955, J. Geophys. Res. 60, 213CrossRefGoogle Scholar
Busse, F.H. 1970, ApJ 159, 629CrossRefGoogle Scholar
Busse, F.H. 2002, Phys. Fluids 14, 1301CrossRefGoogle Scholar
Busse, F.H. & Carrigan, C.R. 1976, Science 191, 81CrossRefGoogle Scholar
Busse, F. H. & Simitev, R. 2004, J. Fluid Mech. 498, 23CrossRefGoogle Scholar
Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wicht, J., & Zhang, K. 2001, Phys. Earth Plan. Inter. 128, 25CrossRefGoogle Scholar
Evonuk, M. & Glatzmaier, G.A. 1991, Icarus 181, 458CrossRefGoogle Scholar
Glatzmaier, G.A. 1984, J. Comp. Phys. 55, 461CrossRefGoogle Scholar
Holme, R. & Bloxham, J. 1996 J. Geophys. Res. 101, 2177CrossRefGoogle Scholar
Lee, K.K.M., Benedetti, L.R., Jeanloz, R., Celliers, P.M., Eggert, J.H., Hicks, D.G., Moon, S.J., Mackinnon, A., Collins, G.W., Henry, E., Koenig, M., & Benuzzi-Mounaix, A. 2006, J. Chem. Phys. 125, 014701CrossRefGoogle Scholar
Liu, J., Goldreich, P.M., & Stevenson, D.J. 2006, Icarus submittedGoogle Scholar
Nellis, W.J., Weir, S.T., & Mitchell, A.C. 1996, Science 273, 396CrossRefGoogle Scholar
Ruzmaikin, A.A. & Starchenko, S.V. 1991, Icarus 93, 82CrossRefGoogle Scholar
Simitev, R. & Busse, F.H. 2003, New J. Phys. 5, 97.1CrossRefGoogle Scholar
Simitev, R. & Busse, F.H. 2005, J. Fluid Mech. 532, 355CrossRefGoogle Scholar
Stanley, S. & Bloxham, J. 2004, Nature 428, 151CrossRefGoogle Scholar
Tilgner, A. 1999, Int. J. Numer. Meth. Fluids 30, 7133.0.CO;2-Y>CrossRefGoogle Scholar
Zhang, K. 1994, J. Fluid Mech. 268, 211CrossRefGoogle Scholar