Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T02:27:23.219Z Has data issue: false hasContentIssue false

Dynamics of the Milky Way Bar/Bulge

Published online by Cambridge University Press:  14 May 2020

Ortwin Gerhard*
Affiliation:
Max-Planck-Institute for Ex. Physics, Giessenbachstr. 1, D-85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar surveys and dynamical models have recently led to important progress on understanding the dynamical structure of the Milky Way’s bar and central box/peanut bulge. This talk briefly reviews the density structure of the bulge and bar from star count tomography, the cylindrical rotation of bulge stars, and the measurements of their stellar masses and pattern speed that have been obtained by fitting dynamical models to the combined star count and line-of-sight velocity data. Recent work deriving absolute proper motions throughout the bulge from the VIRAC survey and Gaia has led to a new 3D measurement of the barred bulge kinematics which is expected to greatly improve the dynamical models, and has already confirmed the relatively slow pattern speed (∼40 kms−1 kpc−1) obtained from the previous dynamical and gas-dynamical modelling.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Benjamin, R. A., Churchwell, E., Babler, B. L., et al. 2005, ApJL, 630, L149CrossRefGoogle Scholar
Clarke, J. P., Wegg, C., Gerhard, O., Smith, L. C., & Lucas, P. W., 2019, MNRAS 489, 351910.1093/mnras/stz2382CrossRefGoogle Scholar
Gerhard, O. 2018, IAUS 334, 73Google Scholar
Hammersley, P. L., Garzón, F., Mahoney, T. J., et al. 2000, MNRAS, 317, L4510.1046/j.1365-8711.2000.03858.xCrossRefGoogle Scholar
Kozłowski, S., Woźniak, P. R., Mao, S., et al. 2006, MNRAS, 370, 43510.1111/j.1365-2966.2006.10487.xCrossRefGoogle Scholar
Kunder, A., Koch, A., & Rich, R. M., et al. 2012, AJ, 143, 57CrossRefGoogle Scholar
McWilliam, A. & Zoccali, M. 2010, ApJ, 724, 1491CrossRefGoogle Scholar
Molaeinezhad, A., Falcón-Barroso, J., & Martínez-Valpuesta, I., et al. 2016, MNRAS, 456, 692CrossRefGoogle Scholar
Nataf, D. M., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, ApJ, 721, L28CrossRefGoogle Scholar
Ness, M., Freeman, K, Athanassoula, E, et al. 2013, MNRAS, 432, 2092CrossRefGoogle Scholar
Ness, M., Zasowski, G., Johnson, J. A., et al. 2016, ApJ 819, 2CrossRefGoogle Scholar
Portail, M., Wegg, C., Gerhard, O., & Martinez-Valpuesta, I. 2015, MNRAS, 448, 71310.1093/mnras/stv058CrossRefGoogle Scholar
Portail, M., Gerhard, O., Wegg, C., & Ness, M. 2017a, MNRAS, 465, 1621 (P17a) CrossRefGoogle Scholar
Portail, M., Wegg, C., Gerhard, O., & Ness, M. 2017b, MNRAS, 470, 1233 (P17b) CrossRefGoogle Scholar
Rattenbury, N. J., Mao, S., Debattista, V. P., et al. 2007, MNRAS, 378, 1165CrossRefGoogle Scholar
Sanders, J. L., Smith, L., Evans, N. W., & Lucas, P. W., 2019, MNRAS, 487, 5188CrossRefGoogle Scholar
Shen, J., Rich, R. M., Kormendy, J., et al. 2010, ApJ, 720, L72CrossRefGoogle Scholar
Smith, L. C., Lucas, P. W., Kurtev, R., et al. 2018, MNRAS, 474, 1826CrossRefGoogle Scholar
Sormani, M. C., Binney, J., & Magorrian, J. 2015, MNRAS, 454, 1818CrossRefGoogle Scholar
Stanek, K. Z., Mateo, M., Udalski, A., et al. 1994, ApJL, 429, L73CrossRefGoogle Scholar
Wegg, C. & Gerhard, O. 2013, MNRAS 435, 187410.1093/mnras/stt1376CrossRefGoogle Scholar
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS 450, 4050CrossRefGoogle Scholar
Zoccali, M., Vasquez, S., Gonzalez, O. A., et al. 2017, A&A, 599, 12Google Scholar