Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T00:18:16.126Z Has data issue: false hasContentIssue false

The dynamics of the globular cluster M22 (NGC 6656)

Published online by Cambridge University Press:  11 March 2020

D. Chen
Affiliation:
China Academy of Space Technology, 100086, Beijing, China email:[email protected]
L. Chen
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030Shanghai, China email: [email protected]
J. J. Wang
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030Shanghai, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have used the Hubble Space Telescope (HST) observations to measure proper motion of the globular cluster NGC 6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. Based on the proper motion of the clusters, its space velocity and orbit are also calculated. The central velocity dispersion in radial and tangential components of the internal motion of cluster stars is 16.99 km s−1. We derive the mass-to-light ratio M/LV∼3.3 ± 0.2 which is relatively higher than the previous works.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contrct NAS5-26555.

References

Albrow, M. D., De Marchi, G., & Sahu, K. C. 2002, ApJ, 579, 660CrossRefGoogle Scholar
Allen, C. & Santillan, A. 1991, RMxAA, 22, 255Google Scholar
Anderson, J, King, I. R. 2000, PASP, 112, 1360CrossRefGoogle Scholar
Da Costa, G. S. & Armandroff, T. E. 1990, AJ, 100, 162CrossRefGoogle Scholar
Dauphole, B., Geffert, M., Colin, J., Ducourant, C., Odenkirchen, M., & Tucholke, H.-J. 1996, A&A, 313, 119Google Scholar
Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792CrossRefGoogle Scholar
Djorgovski, S. & Meylan, G. 2002, AJ, 108, 1292CrossRefGoogle Scholar
Djorgovski 2002, ApJ, 438L, 29DGoogle Scholar
Drukier, G. A., Bailyn, C. D., van Altena, W. F., & Girard, T. M. 2003, AJ, 125, 2559CrossRefGoogle Scholar
Gaudi, B. S. 2002, ApJ, 566, 452CrossRefGoogle Scholar
Ivans, I. I., Sneden, C., Wallerstein, G., Kraft, R. P. Norris, J. E. Fulbright, J. P., & Gonzalez, G. 2004, Mem. S.A.It., 75, 286Google Scholar
Illingworth, G. 1976, ApJ, 204, 73CrossRefGoogle Scholar
King, I. R. 1966, AJ, 71, 64CrossRefGoogle Scholar
Lehnert, M. D., Bell, R. A., & Cohen, J. G. 1991, ApJ, 367, 514CrossRefGoogle Scholar
McLaughlin, D. E. 2000, ApJ, 539, 618CrossRefGoogle Scholar
Monaco, L., Pancino, E., Ferraro, F. R., & Bellazzini, M. 2004, MNRAS, 349, 1278CrossRefGoogle Scholar
Peterson, C. J. & King, I. R. 1991, AJ, 80, 427CrossRefGoogle Scholar
Peterson, R. C. & Cudworth, K. M. 1994, ApJ, 420, 612CrossRefGoogle Scholar
Peterson, R. C. & Latham, D. W. 1986, ApJ, 305, 645CrossRefGoogle Scholar
Pilachowski, C., Leep, E. M., Wallerstein, G., & Peterson, R. C. 1982, ApJ, 263, 187CrossRefGoogle Scholar
Queloz, D., Dubath, P., & Pasquini, L. 1995, A&A, 300, 31Google Scholar
Richter, P., Hilker, M., & Richtler, T. 1999, A&A, 350, 476Google Scholar
Trager, S. C., Djorgovski, S. & King, I. R. 1993, ASP, 347Google Scholar
Trager, S. C., King, I. R., & Djorgovski, S. 1995, AJ, 109, 218CrossRefGoogle Scholar
White, R. E. & Shawl, S. J. 1987, ApJ, 317, 246CrossRefGoogle Scholar
Zinn, R. 1985, ApJ, 293, 424CrossRefGoogle Scholar
Zoccali, M., Renzini, A., Ortolani, S., Bica, E., & Barbuy, B. 2001, AJ, 121, 2638CrossRefGoogle Scholar