Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T18:22:48.438Z Has data issue: false hasContentIssue false

Dynamics of Circumstellar Planets in Binary Star Systems

Published online by Cambridge University Press:  16 October 2024

Man Hoi Lee*
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
Ka Ho Wong
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
Ho Wan Cheng
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
Trifon Trifonov
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Sabine Reffert
Affiliation:
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
Andreas Quirrenbach
Affiliation:
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Circumstellar planets in binary star systems provide unique constraints on the formation and dynamical evolution of planets. We present an empirical formula for the stability boundary of coplanar retrograde orbits, similar to the classic one for coplanar prograde orbits. We discuss two of the tightest binaries with circumstellar planets: HD 59686 and ν Octantis. For HD 59686, dynamical fitting of the radial velocity data and stability analysis show that the planet must be either on a nearly coplanar retrograde orbit or in one of the narrow regions of prograde orbits stabilized by secular apsidal alignment. For ν Octantis, a nearly coplanar retrograde planetary orbit is the only option for dynamical stability. We also discuss the mysterious case of ε Cygni. It shows short-period radial velocity variations that closely resemble the signal of a Jupiter-mass planet, but the period and amplitude change over time and dynamical stability analysis rules out a planet.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485524.Google Scholar
Dvorak, R. 1986, A&A, 167, 379386.Google Scholar
Eberle, J. & Cuntz, M. 2010, ApJL, 721, L168L171.CrossRefGoogle Scholar
Frink, S., Quirrenbach, A., Fischer, D., Röser, S., & Schilbach, E. 2001, PASP, 113, 173187.CrossRefGoogle Scholar
Gong, Y.-X. & Ji, J. 2018, MNRAS, 478, 45654574.CrossRefGoogle Scholar
Goździewski, K., Słonina, M., Migaszewski, C., & Rozenkiewicz, A. 2013, MNRAS, 430, 533545.CrossRefGoogle Scholar
Hamilton, D. P. & Burns, J. A. 1991, Icarus, 92, 118131.CrossRefGoogle Scholar
Hamilton, D. P. & Burns, J. A. 1992, Icarus, 96, 4364.CrossRefGoogle Scholar
Harrington, R. S. 1977, AJ, 82, 753756.CrossRefGoogle Scholar
Heeren, P., Reffert, S., Trifonov, T., Wong, K. H., Lee, M. H., Lillo-Box, J., Quirrenbach, A., Arentoft, T., Albrecht, S., Grundahl, F., Andersen, M. F., Antoci, V., & Pallé, P. L. 2021, A&A, 647, A160.Google Scholar
Holman, M. J. & Wiegert, P. A. 1999, AJ, 117, 621628.CrossRefGoogle Scholar
Innanen, K. A. 1980, AJ, 85, 8185.CrossRefGoogle Scholar
Kraus, A. L., Ireland, M. J., Huber, D., Mann, A. W., & Dupuy, T. J. 2016, AJ, 152, 8.CrossRefGoogle Scholar
McMillan, R. S., Smith, P. H., Moore, T. L., & Perry, M. L. 1992, PASP, 104, 1173.CrossRefGoogle Scholar
Morais, M. H. M. & Giuppone, C. A. 2012, MNRAS, 424, 5264.CrossRefGoogle Scholar
Ortiz, M., Reffert, S., Trifonov, T., Quirrenbach, A., Mitchell, D. S., Nowak, G., Buenzli, E., Zimmerman, N., Bonnefoy, M., Skemer, A., Defrère, D., Lee, M. H., Fischer, D. A., & Hinz, P. M. 2016, A&A, 595, A55.Google Scholar
Quarles, B., Cuntz, M., & Musielak, Z. E. 2012, MNRAS, 421, 29302939.CrossRefGoogle Scholar
Quarles, B., Li, G., Kostov, V., & Haghighipour, N. 2020, AJ, 159, 80.CrossRefGoogle Scholar
Quarles, B. & Lissauer, J. J. 2016, AJ, 151, 111.CrossRefGoogle Scholar
Rabl, G. & Dvorak, R. 1988, A&A, 191, 385391.Google Scholar
Raghavan, D., McAlister, H. A., Henry, T. J., Latham, D. W., Marcy, G. W., Mason, B. D., Gies, D. R., White, R. J., & ten Brummelaar, T. A. 2010, ApJS, 190, 142.CrossRefGoogle Scholar
Ramm, D. J., Nelson, B. E., Endl, M., Hearnshaw, J. B., Wittenmyer, R. A., Gunn, F., Bergmann, C., Kilmartin, P., & Brogt, E. 2016, MNRAS, 460, 37063719.CrossRefGoogle Scholar
Ramm, D. J., Pourbaix, D., Hearnshaw, J. B., & Komonjinda, S. 2009, MNRAS, 394, 16951710.CrossRefGoogle Scholar
Ramm, D. J., Robertson, P., Reffert, S., Gunn, F., Trifonov, T., Pollard, K., & Cantalloube, F. 2021, MNRAS, 502, 27932806.CrossRefGoogle Scholar
Reffert, S., Bergmann, C., Quirrenbach, A., Trifonov, T., & Künstler, A. 2015, A&A, 574, A116.Google Scholar
Trifonov, T., Lee, M. H., Reffert, S., & Quirrenbach, A. 2018, AJ, 155, 174.CrossRefGoogle Scholar
Wang, J., Fischer, D. A., Xie, J.-W., & Ciardi, D. R. 2014a ApJ, 791a, 111.Google Scholar
Wang, J., Xie, J.-W., Barclay, T., & Fischer, D. A. 2014b ApJ, 783b, 4.Google Scholar