Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T04:49:04.594Z Has data issue: false hasContentIssue false

Dynamically stable models for galaxies

Published online by Cambridge University Press:  11 March 2020

Jörg Dabringhausen
Affiliation:
Astronomicky ustav, Universita Karlova, V Holesovickach 2, 180 00 Prague, Czech Republic email: [email protected]
Ladislav Šubr
Affiliation:
Astronomicky ustav, Universita Karlova, V Holesovickach 2, 180 00 Prague, Czech Republic email: [email protected]
Anja Feldmeier-Krause
Affiliation:
Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL60637, United States of America email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A popular approach to model galaxies is Schwarzschild’s method. For this method, a grid of sample orbits of stars in an external potential is calculated, and a model for the stellar system is obtained through attributing specific weights to the orbits in a superposition of them. The models created with Schwarzschild’s method can fit many observed properties of the modeled stellar system with high precision. However, systems that are stationary as Schwarzschild models may therefore exhibit a strong time evolution if they are translated into more realistic self-gravitating models. The issue is highlighted with the Galactic center as an example.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Schwarzschild, M. 1979, ApJ, 232, 236CrossRefGoogle Scholar
van den Bosch, R. C. E., van de Ven, G., Verolme, E. K., Cappellari, M., & de Zeeuw, P. T. 2008, MNRAS, 385, 647CrossRefGoogle Scholar
Seth, A. C., van den Bosch, R. C. E., Mieske, S., Baumgardt, H., Brok, M. D., Strader, J., Neumayer, N., Chilingarian, I., Hilker, M., McDermid, R., Spitler, L., Brodie, J., Frank, M. J., & Walsh, J. L. 2014, Nature, 513, 398CrossRefGoogle Scholar
Feldmeier-Krause, A., Zhu, L., Neumayer, N., van de Ven, G., de Zeeuw, P. T., & Schödel, R. 2017, MNRAS, 466, 4040Google Scholar
Kowalczyk, K., del Pino, A., Łokas, E. L., & Valluri, M. 2019, MNRAS, 482, 5142CrossRefGoogle Scholar
Plummer, H. C. 1911, MNRAS, 71, 460CrossRefGoogle Scholar
Kroupa, P. 2008, Lecture Notes in Physics, 760, 181CrossRefGoogle Scholar
Aarseth, S. J. 1999, PASP, 111, 1333CrossRefGoogle Scholar