Article contents
Dynamical modeling and the interactions with the ISM
Published online by Cambridge University Press: 30 August 2012
Abstract
This paper is a review of some of the recent modeling efforts to improve our understanding of structure formation and evolution of planetary nebulae including their interaction with the interstellar medium. New propositions have been made for the formation mechanism of multi-polar PNe and PPNe. These mechanisms are based on the central engine with interacting binary stars or hole producing instabilities in expanding shock waves leading to illumination effects from the central star that change the appearance of the nebula. Furthermore, there has been a lot of progress in the observation and 3D modeling of the kinematics, which is key to the understanding of the dynamics. Extensive observational catalogs are coming online for the kinematics, as well as some very detailed proper motion measurements have been made. New techniques for morpho–kinematic 3D modeling help to make the interpretation of kinematic data more reliable and detailed. In addition to individual pointed observations, new surveys have lead to the discovery of many PNe that show clear signs of interaction with the interstellar medium. Systematic hydrodynamic models of the interaction have produced a general scheme for the observed structure that results from the interaction of an evolving planetary nebula with the ISM. Detailed modeling of the dust-gas dynamics during the interaction with the ISM have produced interesting predictions for future IR observations. Detailed models were worked out for the structure of the bowshock and tail of Mira that was recently discovered in the UV.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 7 , Symposium S283: Planetary Nebulae: An Eye to the Future , July 2011 , pp. 168 - 175
- Copyright
- Copyright © International Astronomical Union 2012
References
- 1
- Cited by