Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T14:47:02.470Z Has data issue: false hasContentIssue false

Dynamical evolution of star clusters with top-heavy IMF

Published online by Cambridge University Press:  11 March 2020

Hosein Haghi
Affiliation:
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran email: [email protected]
Ghasem Safaei
Affiliation:
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran email: [email protected]
Akram H. Zonoozi
Affiliation:
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran email: [email protected] Helmholtz-Institut für Strahlen-und Kernphysik (HISKP), Universität Bonn, Rheienische Friedrich-Wilhelms Universität Nussallee 14-16, Bonn, D-53115, Germany
Pavel Kroupa
Affiliation:
Helmholtz-Institut für Strahlen-und Kernphysik (HISKP), Universität Bonn, Rheienische Friedrich-Wilhelms Universität Nussallee 14-16, Bonn, D-53115, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several observational and theoretical studies suggest that the initial mass function (IMF) slope for massive stars in globular clusters (GCs) depends on the initial cloud density and metallicity, such that the IMF becomes increasingly top-heavy with decreasing metallicity and increasing the gas density of the forming object. Using N-body simulations of GCs starting with a top-heavy IMF and undergo early gas expulsion within a Milky Way-like potential, we show how such a cluster would evolve. By varying the degree of top-heaviness, we calculate the dissolution time and the minimum cluster mass needed for the cluster to survive after 12 Gyr of evolution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aarseth, S. J. 2003, Gravitational N-Body Simulations. (Cambridge: Cambridge University Press), 430CrossRefGoogle Scholar
Baumgardt, H. & Makino, J. 2003, MNRAS, 340, 227CrossRefGoogle Scholar
Baumgardt, H. & Kroupa, P. 2007, MNRAS, 380, 1589CrossRefGoogle Scholar
Dabringhausen, J., Kroupa, P., & Baumgardt, H. 2009, MNRAS, 394, 1529DCrossRefGoogle Scholar
Dabringhausen, J., Kroupa, P., Pflamm-Altenburg, J., et al. 2012, ApJ, 747, 72DCrossRefGoogle Scholar
Haghi, H., Khalaj, P., Hasani Zonoozi, A., & Kroupa, P. 2017, ApJ, 839, 60CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231CrossRefGoogle Scholar
Kroupa, P. 2002, Science, 295, 82CrossRefGoogle Scholar
Kroupa, P., Pawlowski, M., & Milgrom, M. 2012, IJMPD, 2130003KGoogle Scholar
Marks, M. & Kroupa, P. 2012, A&A, 543, A8Google Scholar
Nitadori, K. & Aarseth, S. J. 2012, MNRAS, 424, 545CrossRefGoogle Scholar
Zonoozi, A. H., Haghi, H., & Kroupa, P. 2016, ApJ, 826, 89CrossRefGoogle Scholar