Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:44:56.307Z Has data issue: false hasContentIssue false

Dynamical effects on the stellar mass function of multiple stellar populations in globular clusters

Published online by Cambridge University Press:  11 March 2020

Enrico Vesperini
Affiliation:
Department of Astronomy, Indiana University, Bloomington, IN47401, USA email:[email protected]
Jongsuk Hong
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, HaiDian District, Beijing100871, China
Jeremy J. Webb
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto,Toronto, ON, M5S 3H4, Canada
Franca D’Antona
Affiliation:
INAF, Osservatorio Astronomico di Roma, I-00040 Monteporzio Catone, Rome, Italy
Annibale D’Ercole
Affiliation:
INAF, Osservatorio Astronomico di Bologna, I-40129 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a brief summary of the results of a study of the effects of dynamical evolution on the stellar mass function of multiple-population globular clusters. Theoretical studies have predicted that the process of multiple-population cluster formation results in a system in which second-generation (2G) stars are initially more centrally concentrated than first-generation (1G) stars. In the study presented here, we have explored the implications of the initial differences between the 2G and 1G structural properties for the evolution of the local (measured at different distances from a cluster center) and global mass function. We have studied both systems in which 1G and 2G stars start with the same initial mass function (IMF) and systems in which 1G and 2G stars have different IMFs. Finally we have explored the evolution of the spatial mixing and found that the multiscale nature of the clusters studied leads to a dependence of the mixing rate on the stellar mass.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N., Lamers, H. J. G. L. M., de Mink, S. E., Longmore, S. N., Goodwin, S. P., & Gieles, M. 2013, MNRAS, 436, 2398CrossRefGoogle Scholar
Bellini, A.et al. 2009, A&A, 507, 1393Google Scholar
Bellini, A.et al. 2015, ApJ, 810, L13CrossRefGoogle Scholar
Bekki, K. 2010, ApJ, 724, L99CrossRefGoogle Scholar
Calura, F., D’Ercole, A., Vesperini, E., Vanzella, E., & Sollima, A. 2019, MNRAS, 489, 3269Google Scholar
Carretta, E.et al. 2009a, A&A, 505, 117Google Scholar
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009b, A&A, 505, 139Google Scholar
Cordero, M. J., Henault-Brunet, V., Pilachowski, C. A., Balbinot, E., Johnson, C. I., & Varri, A. L., 2017, MNRAS, 465, 3515CrossRefGoogle Scholar
Cordoni, G., Milone, A. P., Mastrobuono-Battisti, A., Marino, A. F., Lagioia, E. P., Tailo, M. 2019, ApJ, in press (arXiv:1905.09908)Google Scholar
Dalessandro, E.et al. 2014, ApJ, 791, L4CrossRefGoogle Scholar
Dalessandro, E.et al. 2018, ApJ, 864, 33CrossRefGoogle Scholar
D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825CrossRefGoogle Scholar
Decressin, T., Meynet, G., Charbonnel, C.Prantzos, N. & Ekstrom, S. 2007, A&A, 464, 1029Google Scholar
Gieles, M.et al. 2018, MNRAS, 478, 2461CrossRefGoogle Scholar
Henault-Brunet, V., Gieles, M., Agertz, O., & Read, J. I. 2015, MNRAS, 450, 1164CrossRefGoogle Scholar
Hong, J., Vesperini, E., Sollima, A., McMillan, S. L. W., D’Antona, F., & D’Ercole, A. 2015, MNRAS, 449, 629CrossRefGoogle Scholar
Hong, J., Vesperini, E., Sollima, A., McMillan, S. L. W., D’Antona, F., & D’Ercole, A. 2016, MNRAS, 457, 4507CrossRefGoogle Scholar
Hong, J., Patel, S., Vesperini, E., Webb, J. J., & Dalessandro, E. 2019, MNRAS, 483, 2592CrossRefGoogle Scholar
Lardo, C., Bellazzini, M., Pancino, E., Carretta, E., Bragaglia, A., & Dalessandro, E. 2011, A&A, 525, A114Google Scholar
Lucatello, S., Sollima, A., Gratton, R., Vesperini, E., D’Orazi, V., & Carretta, E. 2015, A&A, 584, A52Google Scholar
Miholics, M., Webb, J. J., & Sills, A. 2015, MNRAS, 454, 2166CrossRefGoogle Scholar
Milone, A. P. 2012, A&A, 537, A77Google Scholar
Milone, A. P.et al. 2017, MNRAS, 464, 3636CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Mastrobuono-Battisti, A., & Lagioia, E. P. 2018, MNRAS, 479, 5005CrossRefGoogle Scholar
Nardiello, D., Milone, A. P., Piotto, G., Marino, A. F., Bellini, A., & Cassisi, S. 2015, A&A, 573, A70Google Scholar
Piotto, G.et al. 2015, AJ, 149, 91CrossRefGoogle Scholar
Richer, H. B., Heyl, J., Anderson, J., Kalirai, J. S., Shara, M. M., Dotter, A., Fahlman, G. G., & Rich, R. 2013, ApJ, 771, L15CrossRefGoogle Scholar
Simioni, M., Milone, A. P., Bedin, L. R., Aparicio, A., Piotto, G., Vesperini, E., & Hong, J. 2016, MNRAS, 463, 449CrossRefGoogle Scholar
Tiongco, M., Vesperini, E. & Varri, A. L. 2019, MNRAS, 487, 5535CrossRefGoogle Scholar
Vesperini, E., McMillan, S. L. W., D’Antona, F., & D’Ercole, A. 2011, MNRAS, 416, 355Google Scholar
Vesperini, E., McMillan, S. L. W., D’Antona, F., & D’Ercole, A. 2013, MNRAS, 429, 1913CrossRefGoogle Scholar
Vesperini, E., Hong, J., Webb, J. J., D’Antona, F., & D’Ercole, A. 2018, MNRAS, 476, 2731CrossRefGoogle Scholar