Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T02:51:05.901Z Has data issue: false hasContentIssue false

Dynamical detection of a magnetocentrifugal wind driven by a 20 M YSO

Published online by Cambridge University Press:  24 July 2012

L. J. Greenhill
Affiliation:
Harvard-Smithsonian CfA, 60 Garden St, Cambridge, MA, USA email: [email protected]
C. Goddi
Affiliation:
ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany email: [email protected], [email protected]
C. J. Chandler
Affiliation:
NRAO, PO Box O, Socorro, NM, USA email: [email protected]
E. M. L. Humphreys
Affiliation:
ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany email: [email protected], [email protected]
L. D. Matthews
Affiliation:
MIT Haystack Observatory, Off Route 40, Westford, MA, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have tracked the proper motions of ground-state λ7mm SiO maser emission excited by radio Source I in the Orion BN/KL region. Based on dynamical arguments, Source I is believed to be a hard 20 M binary. The SiO masers trace a linear bipolar outflow (NE-SW) 100 to 1000 AU from the binary. The median 3D velocity is 18 km s−1. An overlying distribution of 1.3 cm H2O masers betrays similar characteristics. The outflow is aligned with the rotation axis of an edge-on disk and wide angle flow known inside 100 AU. Gas dynamics and emission morphology traced by masers around Source I provide dynamical evidence of a magnetocentrifugal disk-wind around this massive YSO, notably a measured gradient in line-of-sight velocity perpendicular to the flow axis, in the same direction as the disk rotation and with comparable speed. The linearity of the flow, despite the high proper motion of Source I and the proximity of dense gas associated with the Orion Hot Core, is also more readily explained for a magnetized flow. The extended arcs of ground-state maser emission bracketing Source I are a striking feature, in particular since dust formation occurs at smaller radii. We propose that the arcs mark two C-type shocks at the transition radius to super-Alfvénic flow.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bally, J., Cunningham, N. J., Moeckel, N., et al. 2011, ApJ, 727, 113CrossRefGoogle Scholar
Genzel, R., Reid, M. J., Moran, J. M., & Downes, D. 1981, ApJ, 244, 884Google Scholar
Goddi, C., Greenhill, L. J., Chandler, C. J., et al. 2009, ApJ, 698, 1165CrossRefGoogle Scholar
Goddi, C., Greenhill, L. J., Humphreys, E. M. L., et al. 2011b, ApJ, 739, L13CrossRefGoogle Scholar
Goddi, C., Humphreys, E. M. L., Greenhill, L. J., et al. 2011a, ApJ, 728, 15Google Scholar
Gómez, L., Rodríguez, L. F., Loinard, L., et al. 2008, ApJ, 685, 333CrossRefGoogle Scholar
Greenhill, L. J., Gwinn, C. R., Schwartz, C., et al. 1998, Nature, 396, 650CrossRefGoogle Scholar
Greenhill, L. J., Gezari, D. Y., Danchi, W. C., et al. 2004, ApJ, 605, L57Google Scholar
Kim, M. K., et al. 2008, PASJ, 60, 991CrossRefGoogle Scholar
Matthews, L. D., Greenhill, L. J., Goddi, C., et al. 2010, ApJ, 708, 80Google Scholar
Rodríguez, L. F., Poveda, A., Lizano, S., & Allen, C. 2005, ApJL, 627, L65CrossRefGoogle Scholar
Schilke, P., Walmsley, C. M., Pineau des Forets, G., & Flower, D. R. 1997, A&A, 321, 293Google Scholar