Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:16:06.287Z Has data issue: false hasContentIssue false

Dynamic evolution of interplanetary shock waves driven by CMEs

Published online by Cambridge University Press:  05 July 2012

P. Corona-Romero
Affiliation:
Posgrado en Ciencias de la Tierra, Universidad Nacional Autonoma de Mexico, Av. Universidad 2000, Mexico City, Mexico. email: [email protected] Insituto de Geofisica Michoacan, Universidad Nacional Autonoma de Mexico, Tzintzuntzan 310, Morelia, Mexico. email: [email protected]
J. A. Gonzalez-Esparza
Affiliation:
Insituto de Geofisica Michoacan, Universidad Nacional Autonoma de Mexico, Tzintzuntzan 310, Morelia, Mexico. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a study about the propagation of interplanetary shock waves driven by super magnetosonic coronal mass ejections (CMEs). The discussion focuses on a model which describes the dynamic relationship between the CME and its driven shock and the way to approximate the trajectory of shocks based on those relationships, from near the Sun to 1 AU. We apply the model to the analysis of a case study in which our calculations show quantitative and qualitative agreements with different kinds of data. We discuss the importance of solar wind and CME initial conditions on the shock wave evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bisi, M. M., Breen, A. R., Jackson, B. V., Fallows, R. A., Walsh, A. P., Mikić, Z., Riley, P., Owen, C. J., Gonzalez-Esparza, A., Aguilar-Rodriguez, E., Morgan, H., Jensen, E. A., Wood, A. G., Owens, M. J., Tokumaru, M., Manoharan, P. K., Chashei, I. V., Giunta, A. S., Linker, J. A., Shishov, V. I., Tyul'Bashev, S. A., Agalya, G., Glubokova, S. K., Hamilton, M. S., Fujiki, K., Hick, P. P., Clover, J. M., & Pintér, B. 2010, Solar Phys., 265, 49CrossRefGoogle Scholar
Bothmer, V. & Schwenn, R. 1998, Ann. Geophysicae, 16, 1CrossRefGoogle Scholar
Cavaliere, A. & Messina, A. 1976, ApJ, 209, 424CrossRefGoogle Scholar
Corona-Romero, P. & Gonzalez-Esparza, J. A. 2011, JGR, 116, A05104CrossRefGoogle Scholar
Farris, M. H. & Russell, C. T. 1994, JGR, 99, 17681CrossRefGoogle Scholar
Gopalswamy, N., Lara, A., Lepping, R. P., Kaiser, M. L., & Berdichevsky, D., St.Cyr, O. C. 2000, GRL, 27, 145CrossRefGoogle Scholar
Landau, D. L. & Lifshitz, M. E. 2005, Fluid Mechanics, Course of Theoretical Physics Vol. 6 (Edit. Elsevier).Google Scholar
Ontiveros, V. & Vourlidas, A. 2009, ApJ, 693, 267CrossRefGoogle Scholar
Pintér, S. & Dryer, M. 1990, Bull. Astron. Inst. Czechosl., 41, 137Google Scholar
Smart, D. F. & Shea, M. A. 1985, JGR, 90, 183CrossRefGoogle Scholar