Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T17:17:44.819Z Has data issue: false hasContentIssue false

The Dwarfs Beyond: Relating Stellar and Halo Mass in Dwarf Galaxies to z ~ 1

Published online by Cambridge University Press:  10 April 2015

Sarah H. Miller*
Affiliation:
University of California, Irvine, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Do the kinematics and mass profiles of dwarf galaxies present a fundamental challenge to standard cold dark matter (CDM) models? New, deep spectroscopy using DEIMOS on Keck for hundreds of low stellar mass (107-109 M star-forming galaxies at intermediate redshift (0.2 < z < 1) addresses this inquiry in a way that is less subject to cosmic variance and environmental bias than previous, more local work. Half of this sample reveals resolved, doppler-shifted nebular emission, used to constrain rotation curves. From these we can construct the stellar mass Tully-Fisher relation to masses as low as ~107 M, and a persistent discrepancy is found between predictions from simulations and models compared to our observations. We suggest on-going and future tests that will be more effective in distinguishing between the effects of baryonic feedback and alternative models of dark matter in this remarkable regime.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57Google Scholar
Berlind, A. A. & Weinberg, D. H. 2002, ApJ, 575, 587Google Scholar
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40Google Scholar
Courteau, S., Dutton, A. A., van den Bosch, F. C., MacArthur, L. A., Dekel, A., McIntosh, D. H., & Dale, D. A. 2007, ApJ, 671, 203Google Scholar
Dutton, A. A., et al. 2011, MNRAS, 410, 1660Google Scholar
Ferrero, I., Abadi, M. G., Navarro, J. F., Sales, L. V., & Gurovich, S. 2012, MNRAS, 425, 2817Google Scholar
Garrison-Kimmel, S., Rocha, M., Boylan-Kolchin, M., Bullock, J. S., & Lally, J. 2013, MNRAS, 433, 3539Google Scholar
McGaugh, S. S. 2012, AJ, 143, 40Google Scholar
Miller, S. H., Ellis, R. S., Newman, A. B., & Benson, A. 2014, ApJ, 782, 115Google Scholar
Munshi, F., et al. 2013, ApJ, 766, 56Google Scholar
Papastergis, E., Giovanelli, R., Haynes, M. P., & Shankar, F. 2014, (arXiv:1407.4665)Google Scholar
Reyes, R., Mandelbaum, R., Gunn, J. E., Nakajima, R., Seljak, U., & Hirata, C. M. 2012, MNRAS, 425, 2610Google Scholar
Wechsler, R., Zentner, A., Bullock, J. S., Kravtsov, A., & Allgood, B. 2006, ApJ, 652, 71Google Scholar
Weinberg, D. H., Bullock, J. S., Governato, F., Kuzio de Naray, R., & Peter, A. H. G. 2013, (arXiv:1306.0913)Google Scholar