Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T15:45:39.029Z Has data issue: false hasContentIssue false

Dust and molecules in extra-galactic planetary nebulae

Published online by Cambridge University Press:  11 May 2017

D. A. García-Hernández*
Affiliation:
Instituto de Astrofísica de Canarias, C/ Via Láctea s/n, E-38205 La Laguna, Spain email: [email protected] Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bernard-Salas, J. et al. 2009, ApJ, 699, 1541 Google Scholar
Cami, J. et al. 2010, Science, 329, 1180 Google Scholar
Campbell, E. K., Holz, M., Gerlich, D., & Maier, J. P. 2015, Nature, 523, 322 Google Scholar
Cernicharo, J. 2004, ApJ, 608, L41 Google Scholar
Foing, B. H. & Ehrenfreund, P. 1994, Nature, 369, 296 Google Scholar
García–Lario, P. & Perea-Calderón, J. V. 2003, ESA Publication Series, 511, 97 Google Scholar
García-Hernández, D. A. et al. 2006, Science, 314, 1751 Google Scholar
García-Hernández, D. A. et al. 2007, A&A, 462, 711 Google Scholar
García-Hernández, D. A. et al. 2009, ApJ, 705, L31 Google Scholar
García-Hernández, D. A. et al. 2010, ApJ, 724, L39 Google Scholar
García-Hernández, D. A. et al. 2011, ApJ, 737, L30 CrossRefGoogle Scholar
García-Hernández, D. A., Rao, N. K., & Lambert, D. L. 2011, ApJ, 729, 126 Google Scholar
García-Hernández, D. A. et al. 2012, ApJ, 760, 107 Google Scholar
García-Hernández, D. A. 2012, in IAU Symp. 283, Cambridge Univ. Press, 148 Google Scholar
García-Hernández, D. A., Cataldo, F., & Manchado, A. 2013, MNRAS, 434, 415 Google Scholar
García-Hernández, D. A. & Górny, S. K. 2014, A&A, 567, A12 Google Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427 Google Scholar
Kroto, H. W. et al. 1985, Nature, 318, 162 Google Scholar
Kwok, S. et al. 2001, ApJ, 554, L87 Google Scholar
Kwok, S. 2004, Nature, 430, 985 Google Scholar
Micelotta, E. R. et al. 2012, ApJ, 761, 35 CrossRefGoogle Scholar
Mishra, A., Li, A., & Jiang, B. W. 2015, ApJ, 802, 39 Google Scholar
Otsuka, M. et al. 2014, MNRAS, 437, 2577 Google Scholar
Perea-Calderón, J. V. et al. 2009, A&A, 495, L5 Google Scholar
Reid, W. A. 2012, in IAU Symp. 283, Cambridge Univ. Press, 227 Google Scholar
Scott, A., et al. 1997, ApJ, 489, L123 Google Scholar
Stanghellini, L. et al. 2007, ApJ, 671, 1669 Google Scholar
Stanghellini, L. et al. 2012, ApJ, 753, 172 Google Scholar
Volk, K. et al. 2011, ApJ, 735, 127 Google Scholar
Waters, L. B. F.. M. et al. 1996, A&A, 315, L361 Google Scholar