Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T08:26:04.975Z Has data issue: false hasContentIssue false

Dust and Molecule Formation and Processing in Supernovae and their Remnants

Published online by Cambridge University Press:  05 March 2015

J. Rho
Affiliation:
SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043; email:[email protected]
M. Andersen
Affiliation:
Institut de Planétologie et d'Astrophysique de Grenoble, France
A. Tappe
Affiliation:
SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043; email:[email protected]
H. Gomez
Affiliation:
School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK
M. Smith
Affiliation:
School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK
J. P. Bernard
Affiliation:
Centre d'Etude Spatiale des Rayonnements, CNRS, 9 av. du Colonel Roche, BP 4346, 31028 Toulouse, France
T. Onaka
Affiliation:
Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, [email protected]
J. Cami
Affiliation:
Dept. of Physics & Astronomy, Univ. of Western Ontario, London, ON N6A 3K7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae (SNe) produce, fragment and destroy dust, molecules and nucleosynthetic elements, and reshape and modify the ISM. I will review recent infrared observations of supernova remnants (SNRs) and SNe which show that SNe are important sites of dust and molecule formation and are major dust creators in the Universe. Detection of carbon monoxide (CO) fundamental band from the young SNR Cas A indicates that astrochemical processes in SNRs interacting with molecular clouds provide astrophysical laboratories to study evolution of the ISM returning material from dense clouds into the more diffuse medium and galactic halo. Two dozen SNRs are known to be interacting with molecular clouds using H2 and millimeter observations. Recent Spitzer, Herschel and SOFIA observations along with ground-based observations have greatly advanced our understanding shock processing and astrochemistry of dust, H2, high J CO, and other neutral and ionized molecules and polycyclic aromatic hydrocarbon (PAH). Ionized molecules and warm layer of molecules that are excited by UV radiation, X-rays, or cosmic rays will be described. Finally I will discuss how astrochemical processes of dust and molecules in SNRs impact the large scale structures in the ISM.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Andersen, M., Rho, J., Reach, W. T., et al. 2011, ApJ 742, 7CrossRefGoogle Scholar
Barlow, M. J., Krause, O., Swinyard, B. M., et al. 2010, A&A 518, L138Google Scholar
Bernard, J.-P., Reach, W. T., Paradis, D., et al. 2008, AJ 136, 919Google Scholar
Compiègne, M., Abergel, A., Verstraete, L., & Habart, E. 2008, A&A 491, 797Google Scholar
Hewitt, J. W., Rho, J., Andersen, M., & Reach, W. T. 2009, ApJ 694, 1266Google Scholar
Hollenbach, D. & McKee, C. F. 1989, ApJ 342, 306CrossRefGoogle Scholar
Reach, W. T., Rho, J., Tappe, A., et al. 2006, AJ 131, 1479CrossRefGoogle Scholar
Rho, J., Jarrett, T. H., Reach, W. T., et al. 2009, ApJ (Letters) 693, L39Google Scholar
Rho, J., Kozasa, T., Reach, W. T., et al. 2008, ApJ 673, 271CrossRefGoogle Scholar
Rho, J., Onaka, T., Cami, J., & Reach, W. T. 2012, ApJ (Letters) 747, L6CrossRefGoogle Scholar
Rho, J., Reach, W. T., Tappe, A., et al. 2009, ApJ 700, 579CrossRefGoogle Scholar
Temim, T., Slane, P., Reynolds, S. P., et al. 2010, ApJ 710, 309CrossRefGoogle Scholar