Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:38:14.587Z Has data issue: false hasContentIssue false

Do three-body encounters in galactic nuclei affect compact binary merger rates?

Published online by Cambridge University Press:  11 March 2020

Alessandro A. Trani*
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-density cusps of compact remnants are expected to form around supermassive black holes (SMBHs) in galactic nuclei via dynamical friction and two-body relaxation. Due to the high density, binaries in orbit around the SMBH can frequently undergo close encounters with compact remnants from the cusp. This can affect the gravitational wave merger rate of compact binaries in galactic nuclei. We investigated this process by means of high accuracy few-body simulations, performed with a novel Monte Carlo approach. We find that, around a SgrA*-like SMBH, three-body encounters increase the number of mergers by a factor of 3. This occurs because close encounters can reorient binaries with respect to their orbital plane around the SMBH, increasing the number of Kozai-Lidov induced mergers. We obtain a binary black hole merger rate of ГMW = 1.6 × 10−6 yr−1 per Milky Way-like nucleus.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alexander, T. & Hopman, C. 2009, ApJ, 697, 1861CrossRefGoogle Scholar
Antonini, F. & Perets, H. B. 2012, ApJ, 757(1), 27CrossRefGoogle Scholar
Do, T., Lu, J. R., Ghez, A. M., Morris, M. R., Yelda, S., Martinez, G. D., Wright, S. A., & Matthews, K. 2013, ApJ, 764, 154CrossRefGoogle Scholar
Gillessen, S., Plewa, P. M., Eisenhauer, F., Sari, R., Waisberg, I., Habibi, M., Pfuhl, O., George, E., Dexter, J., von Fellenberg, S., Ott, T., & Genzel, R. 2017, ApJ, 837, 30CrossRefGoogle Scholar
Hailey, C. J., Mori, K., Bauer, F. E., Berkowitz, M. E., Hong, J., & Hord, B. J. 2018, Nature, 556, 70CrossRefGoogle Scholar
Hamers, A. S., Bar-Or, B., Petrovich, C., & Antonini, F. 2018, ApJ, 865, 2CrossRefGoogle Scholar
Hoang, B.-M., Naoz, S., Kocsis, B., Rasio, F. A., & Dosopoulou, F. 2018, ApJ, 856, 140CrossRefGoogle Scholar
Leigh, N. W. C., Antonini, F., Stone, N. C., Shara, M. M., & Merritt, D. 2016, Monthly Notices of the Royal Astronomical Society, 463(2), 1605CrossRefGoogle Scholar
Mikkola, S. & Tanikawa, K. 1999, MNRAS, 310, 745CrossRefGoogle Scholar
Schödel, R., Eckart, A., Alexander, T., Merritt, D., Genzel, R., Sternberg, A., Meyer, L., Kul, F., Moultaka, J., Ott, T., & Straubmeier, C. 2007, A&A, 469, 125Google Scholar
Trani, A. A., Fujii, M. S., & Spera, M.: 2019, The Astrophysical Journal, 875(1), 42CrossRefGoogle Scholar
Trani, A. A., Spera, M., Leigh, N. W. C., & Fujii, M. S.: 2019, arXiv e-prints p. arXiv:1904.07879Google Scholar