Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:50:44.547Z Has data issue: false hasContentIssue false

The Diversity of Massive Stellar Transients Found in Sky-surveys

Published online by Cambridge University Press:  29 August 2024

Joe Lyman*
Affiliation:
University of Warwick, Department of Physics, Gibbet Hill Road, CV4 7AL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The recent generation of dedicated wide-field, high-cadence sky-surveys have overwhelmed discovery statistics for all manner of extra-galactic transients, and uncovered new phenomena seemingly linked to the demise of massive stars. For the more established classes of transients, such as core-collapse supernovae, surges in discoveries are allowing true population studies to provide quantitative constraints not only on the explosion properties, but also on the progenitor populations. Crucially, such population insights are benefiting from creation of samples of transients constructed with largely unbiased methods for discovery and characterisation. Surrounding these discoveries are increasing samples of extreme transients that do not fit the standard core-collapse paradigm - requiring the invocation of exotic progenitor stars and placing demands on the stellar evolution of such systems. Here I will provide a high-level observationally-driven overview of recent results related to massive stellar transients.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., & Ackley, K. a. 2017, ApJL, 848, L12 Google Scholar
Adams, S. M., Kochanek, C. S., Gerke, J. R., Stanek, K. Z., & Dai, X. 2017, MNRAS, 468, 4968 Google Scholar
Afsariardchi, N., Drout, M. R., Khatami, D. K., Matzner, C. D., Moon, D.-S., & Ni, Y. Q. 2021, ApJ, 918, 89 Google Scholar
Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325 Google Scholar
Anderson, J. P. 2019, A&A, 628, A7 Google Scholar
Anderson, J. P., James, P. A., Habergham, S. M., Galbany, L., & Kuncarayakti, H. 2015, PASA, 32, e019 Google Scholar
Angus, C. R., Levan, A. J., Perley, D. A., Tanvir, N. R., Lyman, J. D., Stanway, E. R., & Fruchter, A. S. 2016, MNRAS, 458, 84 Google Scholar
Arnett, W. D. 1982, ApJ, 253, 785 Google Scholar
Beasor, E. R., & Smith, N. 2022, arXiv e-prints, arXiv:2205.02207Google Scholar
Becker, A. 2015, HOTPANTS: High Order Transform of PSF ANd Template Subtraction, Astrophysics Source Code Library, record ascl:1504.004Google Scholar
Bellm, E. C., et al. 2019, PASP, 131, 018002 Google Scholar
Bloemen, S., Groot, P., Nelemans, G., & Klein-Wolt, M. 2015, in Astronomical Society of the Pacific Conference Series, Vol. 496, Living Together: Planets, Host Stars and Binaries, ed. Rucinski, S. M., Torres, G., & Zejda, M., 254Google Scholar
Brink, H., Richards, J. W., Poznanski, D., Bloom, J. S., Rice, J., Negahban, S., & Wainwright, M. 2013, MNRAS, 435, 1047 Google Scholar
Byrne, R. A., & Fraser, M. 2022, MNRAS, 514, 1188 Google Scholar
Chen, T.-W., Smartt, S. J., Yates, R. M., Nicholl, M., Krühler, T., Schady, P., Dennefeld, M., & Inserra, C. 2017, MNRAS, 470, 3566 Google Scholar
Chevalier, R. A. 1977, ARA&A, 15, 175 CrossRefGoogle Scholar
Chevalier, R. A. 1982, ApJ, 258, 790 Google Scholar
Dessart, L., Hillier, D. J., Waldman, R., Livne, E., & Blondin, S. 2012, MNRAS, 426, L76 Google Scholar
Drout, M. R., et al. 2011, ApJ, 741, 97 Google Scholar
Drout, M. R., et al. 2013, ApJ, 774, 58 Google Scholar
Duev, D. A., et al. 2019, MNRAS, 489, 3582 CrossRefGoogle Scholar
Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M. 2013, MNRAS, 436, 774 Google Scholar
Filippenko, A. V. 1997, ARA&A, 35, 309 Google Scholar
Filippenko, A. V., Li, W. D., Treffers, R. R., & Modjaz, M. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 246, IAU Colloq. 183: Small Telescope Astronomy on Global Scales, ed. Paczynski, B., Chen, W.-P., & Lemme, C., 121Google Scholar
Fuller, J. 2017, MNRAS, 470, 1642 Google Scholar
Fuller, J., & Ro, S. 2018, MNRAS, 476, 1853 Google Scholar
Gal-Yam, A. 2012, Science, 337, 927 Google Scholar
Gal-Yam, A. 2019, ARA&A, 57, 305 Google Scholar
Gal-Yam, A., et al. 2022, Nature, 601, 201 Google Scholar
Gezari, S., et al. 2009, ApJ, 690, 1313 Google Scholar
Graur, O., Bianco, F. B., Modjaz, M., Shivvers, I., Filippenko, A. V., Li, W., & Smith, N. 2017, ApJ, 837, 121 Google Scholar
Ho, A. Y. Q., et al. 2022, arXiv e-prints, arXiv:2201.12366Google Scholar
Huber, M., et al. 2015, The Astronomer’s Telegram, 7153, 1Google Scholar
Inserra, C., et al. 2013, ApJ, 770, 128 Google Scholar
Inserra, C., et al. 2017, MNRAS, 468, 4642 Google Scholar
Jiang, L., Tauris, T. M., Chen, W.-C., & Fuller, J. 2021, ApJL, 920, L36 Google Scholar
Kasen, D., Metzger, B. D., & Bildsten, L. 2016, ApJ, 821, 36 Google Scholar
Kasliwal, M. M. 2012, PASA, 29, 482 Google Scholar
Khatami, D. K., & Kasen, D. N. 2019, ApJ, 878, 56 Google Scholar
Killestein, T. L., et al. 2021, MNRAS, 503, 4838 Google Scholar
Kilpatrick, C. D., et al. 2021, MNRAS, 504, 2073 Google Scholar
Kozyreva, A., Kromer, M., Noebauer, U. M., & Hirschi, R. 2018, MNRAS, 479, 3106 Google Scholar
Li, W., et al. 2011, MNRAS, 412, 1441 Google Scholar
Liu, Y.-Q., Modjaz, M., & Bianco, F. B. 2017, ApJ, 845, 85 Google Scholar
Science Collaboration, LSST et al. 2009, arXiv e-prints, arXiv:0912.0201Google Scholar
Lyman, J. D., Bersier, D., James, P. A., Mazzali, P. A., Eldridge, J. J., Fraser, M., & Pian, E. 2016, MNRAS, 457, 328 Google Scholar
Metzger, B. D. 2022, ApJ, 932, 84 Google Scholar
Miller, A. A., et al. 2009, ApJ, 690, 1303 Google Scholar
Modjaz, M., Gutiérrez, C. P., & Arcavi, I. 2019, Nature Astronomy, 3, 717 Google Scholar
Nicholl, M., & Smartt, S. J. 2016, MNRAS, 457, L79 Google Scholar
Nicholl, M., et al. 2016, ApJ, 826, 39 Google Scholar
Ofek, E. O., et al. 2007, ApJL, 659, L13 Google Scholar
Pastorello, A., et al. 2008, MNRAS, 389, 113 Google Scholar
Perley, D. A., et al. 2020, ApJ, 904, 35 Google Scholar
Perley, D. A., et al. 2022, ApJ, 927, 180 Google Scholar
Prentice, S. J., et al. 2019, MNRAS, 485, 1559 Google Scholar
Quimby, R. M., Aldering, G., Wheeler, J. C., Höflich, P., Akerlof, C. W., & Rykoff, E. S. 2007, ApJL, 668, L99 Google Scholar
Quimby, R. M., et al. 2011, Nature, 474, 487 Google Scholar
Sana, H., et al. 2012, Science, 337, 444 Google Scholar
Schlegel, E. M. 1990, MNRAS, 244, 269 Google Scholar
Schulze, S., et al. 2021, ApJS, 255, 29 Google Scholar
Shappee, B. J., et al. 2014, ApJ, 788, 48 Google Scholar
Smith, N. 2014, ARA&A, 52, 487 Google Scholar
Smith, N., Li, W., Filippenko, A. V., & Chornock, R. 2011 a, MNRAS, 412, 1522 Google Scholar
Smith, N., Li, W., Silverman, J. M., Ganeshalingam, M., & Filippenko, A. V. 2011 b, MNRAS, 415, 773 Google Scholar
Steeghs, D., et al. 2022, MNRAS, 511, 2405 Google Scholar
Strotjohann, N. L., et al. 2021, ApJ, 907, 99 Google Scholar
Taddia, F., et al. 2018, A&A, 609, A136 Google Scholar
Tauris, T. M., Langer, N., Moriya, T. J., Podsiadlowski, P., Yoon, S. C., & Blinnikov, S. I. 2013, ApJL, 778, L23 CrossRefGoogle Scholar
Tauris, T. M., Langer, N., & Podsiadlowski, P. 2015, MNRAS, 451, 2123 Google Scholar
Tauris, T. M., et al. 2017, ApJ, 846, 170 Google Scholar
Tonry, J. L., et al. 2018, PASP, 130, 064505 Google Scholar
Tsuna, D., Kashiyama, K., & Shigeyama, T. 2021, ApJ, 914, 64 Google Scholar
Woosley, S. E. 2010, ApJL, 719, L204 Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390 Google Scholar
Yao, Y., et al. 2020, ApJ, 900, 46 Google Scholar
Yoon, S.-C., Dessart, L., & Clocchiatti, A. 2017, ApJ, 840, 10 Google Scholar
Yoon, S. C., Woosley, S. E., & Langer, N. 2010, ApJ, 725, 940 Google Scholar
Zackay, B., Ofek, E. O., & Gal-Yam, A. 2016, ApJ, 830, 27 Google Scholar