Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T00:46:44.687Z Has data issue: false hasContentIssue false

The Distribution of Mass in (Disk) Galaxies: Maximal or Not?

Published online by Cambridge University Press:  09 February 2015

Stéphane Courteau*
Affiliation:
Department for Physics, Engineering Physics and Astrophysics, Queen's University, Kingston, ON K7L 3N6, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relative distribution of matter in galaxies ought to be one of the most definitive predictions of galaxy formation models yet its validation is challenged by numerous observational, theoretical, and operational challenges. All galaxies are believed to be dominated by an invisible matter component in their outskirts. A debate has however been blazing for the last two decades regarding the relative fraction of baryons and dark matter in the inner parts of galaxies: whether galaxies are centrally dominated by baryons (“maximal disk”) is of issue. Some of those debates have been misconstrued on account of operational confusion, such as dark matter fractions being measured and compared at different radii. All galaxies are typically baryon-dominated (maximal) at the center and dark-matter dominated (sub-maximal) in their outskirts; for low-mass galaxies (Vtot ≲ 200 km s− 1), the mass of the dark halo equals the stellar mass at least within 2 disk scale lengths, the transition occurs at larger effective radii for more massive galaxies. An ultimate goal for galaxy structure studies is to achieve accurate data-model comparisons for the relative fractions of baryonic to total matter at any radius.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013, MNRAS, 432, 1862Google Scholar
Athanassoula, E. 2014, MNRAS, 438, L81Google Scholar
Barnabè, M., Dutton, A. A., Marshall, P. J., et al. 2012, MNRAS, 423, 1073Google Scholar
Bershady, M. A., Martinsson, T. P. K., Verheijen, M. A. W., et al. 2011, ApJ, 739, LL47Google Scholar
Bosma, A. 1978, “The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types,” Ph.D. thesis (University of Groningen).Google Scholar
Bottema, R. 1993, A&A, 275, 16Google Scholar
Bovy, J. & Rix, H.-W. 2013, ApJ, 779, 115Google Scholar
Carignan, C. & Freeman, K. C. 1985, ApJ, 294, 494CrossRefGoogle Scholar
Conroy, C. 2013, ARA&A, 51, 393Google Scholar
Courteau, S., Cappellari, M., de Jong, R. S., et al. 2014, Reviews of Modern Physics, 86, 47Google Scholar
Courteau, S., Dutton, A. A., van den Bosch, F. C., et al. 2007, ApJ, 671, 203Google Scholar
Courteau, S. & Rix, H.-W. 1999, ApJ, 513, 561CrossRefGoogle Scholar
Dalcanton, J. J., Spergel, D. N., & Summers, F. J. 1997, ApJ, 482, 659CrossRefGoogle Scholar
Deason, A. J., Belokurov, V., Evans, N. W., & McCarthy, I. G. 2012, ApJ, 748, 2Google Scholar
Dehnen, W. & Binney, J. 1998, MNRAS, 294, 429CrossRefGoogle Scholar
Dutton, A. A., in “Galaxy Masses as Constraints of Formation Models”, Proceedings IAU Symposium No. 311, 2014 Cappellari, M. & Courteau, S., eds.Google Scholar
Dutton, A. A., Treu, T., Brewer, B. J., et al. 2013, MNRAS, 428, 3183Google Scholar
Dutton, A. A., Conroy, C., van den Bosch, F. C., et al. 2011, MNRAS, 416, 322Google Scholar
Dutton, A. A., van den Bosch, F. C., Dekel, A., & Courteau, S. 2007, ApJ, 654, 27Google Scholar
Dutton, A. A., Courteau, S., de Jong, R., & Carignan, C. 2005, ApJ, 619, 218CrossRefGoogle Scholar
Efstathiou, G., Lake, G., & Negroponte, J. 1982, MNRAS, 199, 1069Google Scholar
Englmaier, P. & Gerhard, O. 1999, MNRAS, 304, 512CrossRefGoogle Scholar
Foyle, K., Courteau, S., & Thacker, R. J. 2008, MNRAS, 386, 1821Google Scholar
Kapteyn, J. C. 1922, ApJ, 55, 302Google Scholar
Kranz, T., Slyz, A., & Rix, H.-W. 2003, ApJ, 586, 143Google Scholar
Kregel, M., van der Kruit, P. C., & Freeman, K. C. 2005, MNRAS, 358, 503Google Scholar
Martinsson, T. P. K., Verheijen, M. A. W., Westfall, K. B., et al. 2013, A&A, 557, AA131Google Scholar
Mo, H., van den Bosch, F. C., & White, S. 2010, Galaxy Formation and Evolution, by Mo, Houjun, van den Bosch, Frank, White, Simon, Cambridge, UK: Cambridge University Press, 2010Google Scholar
Morganti, L., Gerhard, O., Coccato, L., Martinez-Valpuesta, I., & Arnaboldi, M. 2013, MNRAS, 431, 3570CrossRefGoogle Scholar
Oguri, M., Rusu, C. E., & Falco, E. E. 2014, MNRAS, 439, 2494Google Scholar
Oort, J. H. 1932, Bull. Astron. Inst. Neth., 6, 249Google Scholar
Reyes, R., Mandelbaum, R., Gunn, J. E., Pizagno, J., & Lackner, C. N. 2011, MNRAS, 417, 2347Google Scholar
Thomas, J., Saglia, R. P., Bender, R., et al. 2007, MNRAS, 382, 657Google Scholar
Trujillo-Gomez, S., Klypin, A., Primack, J., & Romanowsky, A. J. 2011, ApJ, 742, 16Google Scholar
van Albada, T. S., Bahcall, J. N., Begeman, K., & Sancisi, R. 1985, ApJ, 295, 305CrossRefGoogle Scholar
van der Kruit, P. C. & Freeman, K. C. 2011, ARA&A, 49, 301Google Scholar
van der Kruit, P. C. 1988, A&A, 192, 117Google Scholar
Weiner, B. J., Sellwood, J. A., & Williams, T. B. 2001, ApJ, 546, 931CrossRefGoogle Scholar
Widrow, L. M., Perrett, K. M., & Suyu, S. H. 2003, ApJ, 588, 311Google Scholar